
Accurate and Efficient Code Matching Across
Android Application Versions against Obfuscation

Runhan Feng†, Zhuohao Zhang§, Yetong Zhou†, Ziyang Yan† and Yuanyuan Zhang†∗
†Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

§School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
†{fengrunhan, andrew yan, yzy123, yyjess}@sjtu.edu.cn, §2020090922028@std.uestc.edu.cn

Abstract—In an effort to enhance the attractiveness of apps,
developers consistently and frequently release updates to intro-
duce new features and address known issues. Although frequent
updates are beneficial for improving user experience, they also
increase the workload for reverse engineers since existing analysis
results may become obsolete after the release of a new version.
Matching code across app versions can help reverse engineers
quickly migrate existing analysis results to new versions, verifying
whether their prior findings still hold in the new version. This
allows them to focus more on the modified portions of the code,
thus increasing reverse engineering efficiency. Nevertheless, exist-
ing techniques cannot effectively match the code of apps protected
by obfuscation techniques, which are pervasively adopted in prac-
tice. To address the challenges introduced by code obfuscation,
this study presents MatchScope, a novel automated approach
designed to match code at the method level across versions of
Android app binaries. MatchScope effectively leveraging different
levels of fine-grained code features, including class structures and
method opcodes, etc., for similarity comparison, thus achieving
high accuracy. To further enhance the matching efficiency, we
design an index-aware matching algorithm, significantly reducing
the scope and number of pairwise comparisons required com-
pared with existing work. The critical insight of our algorithm
lies in that the obfuscation tools usually rely on an incrementing
index to generate obfuscated names for classes in a deterministic
way. Our evaluation on 20 open-source and 60 real-world apps
demonstrates the effectiveness of MatchScope. The precision and
recall of MatchScope on the ground truth achieve 97.49% and
92.34%, respectively, which are 19.50% and 30.74% higher than
the state-of-the-art tool.

I. INTRODUCTION

Recent years have witnessed exponentially rapid develop-
ment of the Android ecosystem. As of 2022, there are over
3 billion active Android devices worldwide [1], and over
2.6 million apps are hosted on the Google Play Store, the
primary marketplace for Android apps [2]. To introduce new
competitive functionalities and address issues such as security
vulnerabilities and UI bugs in existing code, app vendors
consistently and frequently release updates. This practice not
only improves the apps’ quality but also boosts their popularity
[3] [4].

While frequent updates enhance user experience, they also
bring additional burdens to app reverse engineers. Due to the
closed-source nature of most commercial apps, security pro-
fessionals rely on reverse engineering for security and privacy-
related tasks, including vulnerability discovery and malicious
behavior identification [5] [6] [7] [8]. Reverse engineering is
a time-consuming process that requires considerable expertise

and tedious manual efforts [9] [10]. Previous research indicates
that reverse engineers need 39 minutes on average to com-
prehend small decompiled code snippets with less than 150
lines [11]. Owing to the complexity of reverse engineering, the
limited number of qualified reverse engineers is insufficient to
cope with the continuous growth in the number of apps and
their subsequent versions [12]. To close the gap, there has been
considerable effort to simplify the reverse engineering process
[13]. A substantial amount of literature is focused on detecting
third-party libraries used in apps [14] [15] [16] [17] [18] and
inferring identifier names as well as data structures [19] [20]
[21] in the decompiled code. While tools proposed in these
works can enhance reverse analysis efficiency to some extent,
they cannot migrate existing analysis results to new versions
of the apps, which is particularly crucial in the context of
frequent app updates. This motivates the research of matching
code across app versions [22] [23] [24]. Specifically, assuming
reverse engineers have already completed the analysis of a
specific app version, when a new version is released, if the
code from the original and new versions can be matched,
reverse engineers can quickly verify whether existing analysis
results remain valid in the new version. Otherwise, reverse en-
gineers have to start from scratch to locate the relevant code in
the new version, leading to an extra workload. Automatically
matching code across app versions allows them to focus more
on the modified or newly added code, which is more likely to
introduce new security issues [3] [25].

Ideally, the changed code can be easily identified by
comparing the binary of app versions. However, considering
protecting intellectual property rights and reducing app size,
etc., many developers have adopted obfuscation techniques,
which is a common practice in the development of Android
apps [26] [27]. In particular, Dominik et al. show that roughly
50% of the most popular apps with over 10 million downloads
are obfuscated before being released to Google Play Store
[28]. Code obfuscation presents significant challenges for this
task because the code features between obfuscated and original
code can be exceptionally different. For example, considering
the identifier renaming strategy used by almost all obfuscation
tools, identifiers, including method, class, and package names,
are converted into short and meaningless strings, which makes
it difficult to recover the matching relationships across ver-
sions. Although existing work shows some resilience to obfus-
cation [22] [23] [24], we have found that they cannot achieve

satisfactory performance in practical analysis. On one hand,
existing tools have not taken into account advanced package
hierarchy obfuscation techniques (e.g., class repackaging and
package hierarchy flattening). Specifically, although existing
work considers the impact of obfuscation and designs solutions
that are obfuscation-resilient, they often consider identifier
obfuscation only and utilize package hierarchy features which
are not available when advanced package hierarchy obfusca-
tion techniques are used to aid in matching code. However,
based on our analysis of popular apps, we have observed that,
besides identifier obfuscation, package hierarchy obfuscation
is currently widely adopted in numerous apps, significantly
impacting the effectiveness of existing approaches [23]. On
the other hand, existing work struggles to strike a balance
between accuracy and efficiency. In particular, to achieve high
efficiency, code features are used for direct hash queries,
resulting in insufficient accuracy due to the low entropy of
the features and the bias introduced by obfuscation [29].
To enhance matching accuracy, more granular features are
used to perform pairwise similarity comparisons, which is
time-consuming. As the app evolves, the amount of code it
contains also increases significantly (e.g., tens of thousands
of classes and hundreds of thousands of methods). Although
some approaches utilize the package hierarchy structure to
limit the scope of pairwise similarity comparisons to improve
efficiency, as mentioned earlier, the package hierarchy is often
obfuscated in many cases (e.g., most classes in an app are
packaged into one package). Consequently, in the worst case,
this could result in the degradation of existing approaches to
performing pairwise similarity comparisons across all classes
in an app, affecting both the accuracy and efficiency [22].

In this paper, we propose MatchScope, a comprehensive so-
lution that enables accurate and efficient code matching across
app versions. To achieve high accuracy, we extract fine-grained
code features, including class structures, method descriptors,
and method opcodes, for code similarity comparison. We make
a practical assumption about the obfuscation applied to the
apps, namely there usually exist non-obfuscated classes in
apps. Based on this, we adopt adaptive matching strategies
according to whether the class names are obfuscated or not.
Regarding improving matching efficiency, MatchScope fully
leverages the index information implicitly embedded in the
obfuscated class names of the apps to perform index-aware
matching so that the pairwise comparison can be guided,
significantly reducing the number of comparisons required.
The insight of such optimization lies in that the obfuscation
tools usually rely on an incrementing index to generate ob-
fuscated names for classes in a deterministic way. Therefore,
the obfuscated names of the same class are stable unless
developers make changes like adding or removing classes,
resulting in alterations to the final indexes of the classes
during obfuscation. Given two versions of an app, MatchScope
outputs the matched (identical or updated) methods in both
versions, new methods in the newer version, and deleted meth-
ods in the original version. This information can effectively
assist reverse engineers in dealing with frequent app updates.

We implement MatchScope and evaluate it on 20 open-
source and 60 real-world apps. The latest five versions of
the 20 open-source apps constitute the ground truth. The
evaluation results on the ground truth show that MatchScope
can accurately match classes and methods across versions.
The precision and recall for class matching are 97.49% and
92.34%, respectively, which are 19.50% and 30.74% higher
than APKDiff, the state-of-the-art class matching tool. Re-
garding method matching, MatchScope achieves precision and
recall of 99.75% and 95.23%, respectively. With respect to
efficiency, for popular apps, MatchScope takes an average of
95.87 seconds to analyze consecutive versions, significantly
faster than APKDiff, which takes 328.15 seconds on average.

In summary, we make the following major contributions in
this work:
• We design a novel technique to match code across An-

droid app versions, which can effectively handle com-
mon obfuscation techniques, including identifier renam-
ing and package hierarchy obfuscation. Our approach
extracts fine-grained code features, including class struc-
tures, method descriptors, and method opcodes, for code
similarity comparison and leverages the implied index
information from obfuscated class names to improve the
matching efficiency further.

• We implement our technique in a tool called Match-
Scope and evaluate its performance with open-source
and real-world apps. Compared with the existing tool,
MatchScope can match classes and methods across app
versions more accurately and efficiently. The source of
MatchScope is publicly available at https://github.com/
Aoa0/MatchScope.

The rest of the paper is organized as follows. We first
introduce the background and research scope in Section II.
We then describe the design of MatchScope in Section III.
The evaluation results are presented in Section IV, followed
by a discussion in Section V. We introduce related work in
Section VI and conclude our paper in Section VII.

II. BACKGROUND AND SCOPE

This section briefly introduces the obfuscation techniques
adopted by Android apps, which is the main challenge in
matching code across versions. Also, we define the scope of
our research in this work.

A. Android Obfuscation

Code obfuscation is a technique that makes program code
less understandable by applying functionality-preserving trans-
formations [30]. It is widely adopted to defend against reverse
engineering and protect intellectual property [31]. In the
Android ecosystem, source code written in different languages
will ultimately be compiled into binaries with different file for-
mats. For instance, Java/Kotlin code is compiled into Android
bytecode, while C/C++ code is compiled into native binaries.
Generally, different formats of binaries adopt different obfus-
cation techniques. In this work, we focus on the Java binaries,
and the subsequent parts of this section will introduce two

obfuscation techniques (i.e., identifier renaming and package
hierarchy obfuscation) used on Java bytecode, which is highly
related to our work.

package com.diffscope.demo;
import org.apache.log4j.Logger;
......
public class Demo {

private Logger logger;
private boolean logFlag;
......
public void logInfo (String info) {

if (logFlag)
logger.info(info);

}
}
......

package a.a.a;
import b.a.a.a;
......
public class a {

private b.a.a.a a;
private boolean b;
......
public void a (String a) {

if (this.b)
a.a(a);

}
}
......

Source code Obfuscated code

Fig. 1: Code Example of Identifier Renaming

Identifier Renaming. Identifier renaming is the most com-
monly used obfuscation technique in Android apps. In soft-
ware development, developers use meaningful names for pro-
gram elements (e.g., variables, methods, classes, and packages)
to improve code readability and maintainability [26]. However,
if such meaningful identifiers are compiled into the released
app, additional semantic information is also provided for re-
verse engineering. Therefore, developers often use obfuscation
tools like ProGuard [32], R8 (from Google) [33], and Redex
(from Facebook) [34] to rename identifiers in the source code
during the compilation phase into meaningless names, which
typically consist of permutations of letters and numbers, such
as aabb or X01 et al [28]. Figure 1 shows an example of
identifier renaming obfuscation. As shown in the figure, most
meaningful identifiers, including names of fields, methods,
classes, etc., have been replaced by short and meaningless
names, except for the Java keywords, primitive types, and
classes defined in the system libraries.

Package Hierarchy Obfuscation. In recent years, more
and more apps have adopted package hierarchy obfuscation
schemes to provide more profound protection to their code.
Packages are usually used to group related files in the de-
velopment, thereby organizing the source code for improved
maintainability. However, such grouping relationships are no
longer necessary in the compiled apps. Moreover, preserving
this kind of grouping relationship can reduce the effectiveness
of other obfuscation schemes because many anti-obfuscation
techniques consider the package hierarchy as an essential
feature. Therefore, currently, mainstream obfuscation tools
like ProGuard and R8 all support obfuscation of the package
hierarchy. Taking ProGuard as an example, ProGuard has two
obfuscation mechanisms that support modifying the package
hierarchy: package flattening and class repackaging. As shown
in Figure 2a, with the -flattenpackagehierarchy option,
ProGuard can move the specified package into the given parent
package. Figure 2b gives an example of class repackaging.
With the -repackageclasses option, ProGuard will move
all classes from the target package to the given new package.
These two obfuscation mechanisms do not have essential

differences as they both lead to altering the original package
hierarchy.

B. Scope of Our Work

Obfuscation and deobfuscation techniques have been in
an ongoing battle, giving rise to the emergence of new
techniques. Therefore, when designing obfuscation-resilient
code-matching schemes, supporting all potential obfuscation
techniques is impractical. Therefore, before elaborating on
the technical details of MatchScope, we define the scope
of obfuscation techniques that MatchScope can support. In
this work, we focus on identifier renaming and package
hierarchy obfuscation on Java code of Android apps, which are
the most commonly used obfuscation techniques in practice
and are supported by ProGuard and R8, the most popular
obfuscation tools [35]. Current obfuscation tools also support
more obfuscation techniques, such as string encryption and
control-flow randomization. However, due to program perfor-
mance, robustness, and cost considerations (e.g., control-flow
randomization is only supported by commercial obfuscation
tools), they are seldom used in Java code, especially in popular
apps [26]. These less commonly used techniques are not within
the scope of this work, and we will discuss potential mitigation
against some of them in Section V.

X

a

b

c

okhttp3

internal

http

HttpMethod

io

FileSystem

CipherSuite

okhttp3

http

HttpMethod
io

FileSystem

CipherSuite

okhttp3

internal

http

HttpMethod

io

FileSystem

CipherSuite

(a) Example of Package Flattening

X

a

b

c

okhttp3

internal

http

HttpMethod

io

FileSystem

CipherSuite

okhttp3

http

HttpMethod
io

FileSystem

CipherSuite

okhttp3

internal

http

HttpMethod

io

FileSystem

CipherSuite

(b) Example of Class Repackaging

Fig. 2: Examples of Package Hierarchy Obfuscation

III. DESIGN

Matching code across app versions is by no means trivial
due to the obfuscation adopted during the app compilation
phase. In this section, we present the design of MatchScope,
which effectively tackles the challenge of obfuscation and
matches code across app versions with high accuracy and
efficiency. The design principle of MatchScope is to minimize

Preprocessing

Remove Irrelevant
Classes

Merge Nested
Classes

Feature Extraction

Class Structures

Method
Instructions

Original

Updated

Match Report

Code Matching

Index-aware
Class Matching

Pairwise Method
Matching

Obfuscation-aware
Class Matching

Extend
Matching

Fig. 3: The workflow of MatchScope

the scope and number of pairwise similarity comparisons as
much as possible.

A. Overview

We model code matching across app versions as a search
problem. Given two versions of an app, MatchScope searches
the newer version for the corresponding code in the older
version to establish matching relationships between program
elements (i.e., classes and methods) in both versions. In this
work, we target method-level matching. Specifically, as for all
the methods in two versions, MatchScope eventually outputs
the matched methods (which can be identical or updated) in
both versions. Additionally, it identifies new methods exclu-
sive to the newer version and the deleted methods exclusive to
the original version. In contrast with the class-level matching
in previous work [22], matching at the method level provides a
more granular perspective, thereby enhancing the efficiency of
reverse engineers in practical tasks such as bug-fixing analysis.

The workflow of MatchScope is illustrated in Figure 3. It
consists of three major phases. Both input apps undergo the
same preprocessing and feature extraction procedures. In the
preprocessing phases, we adopt two strategies (i.e., removing
irrelevant classes and merging nested classes) to reduce the
code search space, which will be detailed in Section III-B.
In the feature extraction phase, we extract features required
for code matching from both class and method levels (Section
III-C). Although our ultimate goal is to match methods across
versions, we begin with class matching since classes have
higher entropy and are relatively more straightforward to
match. It is worth mentioning that during the class matching
phase, we establish correspondences between classes but do
not just find identical classes across versions. In other words,
the designed class-matching approach must tolerate a certain
degree of code modification. During the class matching phase,
MatchScope effectively leverages the information retained in
the binaries and adaptively adopts different strategies based
on whether the class names have been obfuscated. Partic-
ularly, as for the classes with non-obfuscated names, the
matching relationships can be established directly based on
the class name (Section III-D). As for the remaining classes,
MatchScope further inspects the obfuscation-resilient code

features to perform matching. A somewhat naive approach
would be directly performing pairwise comparisons between
all remaining classes from two versions using the extracted
code features, but it incurs significant performance overhead.
Therefore, we propose index-aware matching, which guides
MatchScope in conducting more targeted code comparisons,
achieving class matching accurately and efficiently (Section
III-E). After completing the class matching, MatchScope fur-
ther matches the methods within the corresponding classes and
eventually outputs the match report (Section III-F).

B. Preprocessing

In the preprocessing phase, two strategies are used to reduce
the search space to make subsequent matching more accurate
and efficient. On one hand, we remove program elements
unrelated to the code-matching task in apps. Three types of
program elements are considered irrelevant.

(i) Classes that do not contain actual code, such as interface
classes and classes that contain only empty methods.

(ii) Classes and methods with the modifier synthetic,
which are generated by the compiler.

(iii) Classes in the system libraries (e.g., Android Support
Library) since they mainly provide language features or
compatibility between different Android versions.

On the other hand, we merge nested classes, e.g., anony-
mous and inner classes, with the corresponding outer classes,
a strategy adopted in previous work [23]. The benefits of the
merger operation primarily come from two aspects. Firstly, it
aligns well with MatchScope’s design principles, further re-
ducing the search space. Secondly, compared to outer classes,
nested classes usually contain less information. The matching
accuracy could be affected if they are treated as separate units
for subsequent class matching. In contrast, merging them with
the outer classes can increase the entropy of the outer classes,
which further improves the probability of successful matching.

C. Feature Extraction

The key to establishing code-matching relationships across
app versions lies in making full use of the features preserved
within the binaries for comparison. As for feature extraction,
we construct class and method signatures from the bottom up.

Method-level Features: For each method, we extract
features from the method descriptor (to construct class-level
features) and the method body (to perform method matching),
respectively. With respect to the method descriptor, to counter
the impact of obfuscation, we normalize all non-system library
classes within the method descriptor, replacing them with the
capital letter “X.” Then, we sort the normalized parameter
types and finally get the method descriptor signature similar
to existing approaches [16] [36]. Concerning the method body,
we traverse all the instructions in the method body, extracting
the opcodes, the system APIs called, and constant information
to construct the method body signature.

Class-level Features: For each class, we first extract its
class structure information, including the superclass it inherits
from and the interface classes it implements. Secondly, we
extract the type information of all fields in the class. We
perform the same normalization operation on the extracted
class information, replacing non-system classes with the capi-
tal letter “X.” Last but not least, we collect method descriptor
signatures of all methods defined in the class. To ensure
determinism, we sort the interface classes, field types, and
method descriptor signatures separately and then concatenate
all the features to form the final class structure signature.

In addition to the obfuscation-resilient features mentioned
above, for each class, we also record the class and package
names to determine whether the class name has been ob-
fuscated, which is necessary to implement adaptive matching
strategies. To sum up, we obtain class names, package names,
class structure signatures, and method body signatures for
subsequent matching. For each class structure signature, we
calculate its hash (Ch) and fuzzy hash (Cf). The former is used
for quick matching, while the latter is used for fine-grained
similarity comparison. For each method body signature, we
also calculated its hash (Mh) and fuzzy hash (Mf) for method-
level matching.

D. Obfuscation-aware Class Matching

Inspired by existing work [22] and our investigation on
real-world apps, we make a practical assumption about the
obfuscation used in apps: there usually exist classes whose
names are not obfuscated. There are two possible scenarios
in this situation. One is that some apps themselves do not
use obfuscation techniques. However, due to the inclusion
of third-party libraries, obfuscated classes in the apps could
still exist. The more common scenario is that the apps do
utilize obfuscation techniques. But typically, obfuscation tools
do not obfuscate all the class names in the apps to avoid
affecting the normal functionality of the app after obfuscation.
For example, the name of the classes corresponding to the
parameters of the method Class.forName() and the classes
referenced in the AndroidManifest.xml file are usually not
obfuscated. Therefore, in real-world apps, it is common to
have a portion of the classes whose name is not obfuscated.
The matching relationship across versions can be directly
constructed without further inspection if the unobfuscated
class name exists in both versions, reducing the search space

for obfuscated classes. However, this requires our tool to be
aware of whether the class names are obfuscated or not.

Therefore, in this work, we conduct an obfuscation analysis
on the class name first. Besides class names, we also consider
whether the names of the packages where a class is located
are obfuscated. In other words, only when both the class
name and each level of package name are not obfuscated can
this class be directly used for building matching relationships.
Nevertheless, deciding whether a symbol name is obfuscated
is a non-trivial task [37]. We have formulated some heuristic
rules and combined them with a wordlist to analyze whether
the identifiers (i.e., package names and class names) have
been obfuscated. Specifically, given an identifier, we determine
whether it is obfuscated based on the following rules.

(i) If the length of the identifier is less than or equal to
2, and it is not present in the allowlist, which contains
common short identifiers such as os, io, and ui, etc.,
we consider it to be obfuscated.

(ii) If the length of the identifier is greater than or equal to
3 and less than or equal to 5, and it is not present in the
wordlist, we consider it to be obfuscated.

(iii) If the length of the identifier is greater than 5, we
consider it to be not obfuscated.

Regarding the wordlist collection, we crawl all libraries
from the Maven Central Repository, which contains over 300
thousand Java third-party libraries. We then extract identifiers
from their groupId and artifactId to form the wordlist. In
addition, we add common words used in the computer science
field to the wordlist. The wordlist contains most identifiers that
may be used in Android projects since the developers follow
similar naming conventions. In Rule (ii), we directly compare
the identifiers in the apps with those in the wordlist without
tokenizing them based on CamelCase or snake case naming
conventions, as unobfuscated identifiers requiring tokenization
are typically longer and can be effectively filtered out by
Rule (iii). Our obfuscation analysis strategy has achieved
excellent results in practical analysis, successfully identifying
almost all classes with unobfuscated names. In the cases that
unobfuscated names are mistakenly identified as obfuscated,
the overall result will not be affected since such classes will
be further inspected for matching in subsequent analysis.

E. Index-aware Class Matching

As for the remaining classes with obfuscated names, we
utilize their code features to achieve matching and leverage
the index information implicitly encoded in the obfuscated
class names to enhance matching efficiency. In this section, we
first introduce our observations of indexes used by obfuscation
tools to generate obfuscated names for classes through a
motivating example. Then, we describe in detail how we
use this characteristic to design an efficient class matching
approach.

Motivating Example: Assuming we have a mini app’s
original and updated version, both containing eight classes and
obfuscated already. Figure 4a shows the class-level matching
relationship between these two versions. Each node represents

a class, and their obfuscated class names, such as aa, ah,
etc., are marked next to them. In this example, the two nodes
connected by dashed lines correspond to the matched class in
two versions. In the updated version, the class renamed to ac

during obfuscation in the original version is deleted, and a new
class that is renamed to af during obfuscation is introduced in
the updated version. These two classes do not have matching
classes in the corresponding versions. From the figure, we
can see that the obfuscation is performed in a deterministic
way. Specifically, the classes corresponding to aa and ab in
the original version are still obfuscated as aa and ab in the
updated version. There are mainly two reasons for this. On one
hand, obfuscation tools use an incremental index to generate
class names deterministically. On the other hand, obfuscation
tools process the classes in a fixed order. We analyzed the
implementations of mainstream obfuscation tools, namely Pro-
Guard and R8, and confirmed that they exhibit similar designs.
This design aims to ensure the determinism and reproducibility
of obfuscation results. If obfuscation tools introduce bugs,
developers can quickly identify issues and change the scope
of obfuscation accordingly. Therefore, ideally, supposing that
the class structure of an app remains unchanged while only
method-level changes are introduced in updates, the class-
matching relationship can be easily constructed since the
obfuscated class names remain unchanged across versions.
However, in real-world apps, class structures are commonly
changed because of adding new classes or deleting existing
classes, etc. Concerning the scenario where class structure
changes occur, as shown in Figure 4a, the removal of the
class corresponding to ac does not have a significant impact
on the overall order of classes processed by the obfuscation
tool. The only effect is that the classes following will have
their indexes reduced by one, and this change is reflected in
the obfuscated name in the new version (e.g., ad changed to
ac and ae changed to ad). The opposite situation occurs when
new classes are added.

aa

ab
ac

ae
ad

ah
ag
af

aa

ab
ac

ae
ad

ah
ag
af

Original Updated

aa

ab
ac

ae
ad

ah
ag
af

aa

ab
ac

ae
ad

ah
ag
af

Original Updated

(a) Class Matching
Relationships

aa

ab
ac

ae
ad

ah
ag
af

aa

ab
ac

ae
ad

ah
ag
af

Original Updated

aa

ab
ac

ae
ad

ah
ag
af

aa

ab
ac

ae
ad

ah
ag
af

Original Updated

(b) Anchor Matches

Fig. 4: Motivating Examples for Class-level Matching

Our Approach for Matching Classes in a Nutshell: Al-
though this is an extremely simplified example, many popular
apps exhibit the same characteristic, probably because of the

adoption of mainstream obfuscation tools. Effectively leverag-
ing this characteristic to guide code matching is non-trivial.
We design the index-aware class matching approach based
on the assumption that most of the code (before obfuscation)
remains unchanged before and after the app update. Therefore,
we can more easily uniquely match a portion of classes with
higher entropy. We refer to these matches as anchor matches
since they act as anchors to the indexes between original
and updated versions. As is shown in Figure 4b, the nodes
that are colored represent classes that are matched as anchor
classes. Based on these anchor classes, all classes are divided
into smaller slices. The slice between two consecutive anchor
matches is referred to as a matched slice. For example, in
Figure 4b, [ac,ad] and [ac] are matched slices, so are
[af,ag] and [ae,af,ag]. The classes in the matched slices
are more likely to be successfully matched. Therefore, we
perform pairwise similarity comparisons within the matched
slices to find more matching relationships efficiently. In the
following section, we provide a more detailed explanation of
each step in the approach.

Identifying anchor matches: Anchor matches refer to
classes that remain unchanged between app versions and are
relatively easy to be uniquely matched due to their higher
entropy. They serve as anchors during the subsequent matching
process. Therefore, the correctness of anchor matches needs to
be ensured. To achieve this, we adopt a rigorous approach to
determine anchor matches. Specifically, for two app versions,
we first obtain the Ch of all classes in each version. Then,
we remove classes with duplicate hash values from respective
lists, thus obtaining the unique classes in both app versions.
After that, we compare Ch between the two versions one
by one and finally choose classes with the same hash as
anchor matches. In this step, we employ hashing for queries,
guaranteeing a quicker identification of anchor matches.

Anchor-guided Matching: To perform subsequent
matching, we sort the anchor matches and get the matched
slices between consecutive anchor matches, which enables
us to perform pairwise comparisons within smaller scopes,
effectively enhancing both matching accuracy and efficiency.
In some situations, we may encounter crossed anchor matches.
For example, if ab matches ah while ae matches ab in Figure
4b, then the crossing happens. This could be due to classes
renamed by developers or false positives when identifying
the anchor matches. To address this issue, we remove the
anchor matches that result in crossing. In most apps, a
part of the package structures still exists despite the use of
package hierarchy obfuscation techniques. If anchor matches
appear within these packages, then matching relationships
can be established between these packages. In this case, we
divide the classes within corresponding packages into matched
slices. In processing the matched slices, we adopt a pairwise
similarity comparison approach. For classes in the slice of
the original version, we search for the most similar class in
the corresponding slice in the updated version to establish
the class-level matching relationship. In the comparison, we
use Cf to measure the class similarity. We only consider

classes to be matched if the similarity of their class exceeds
a pre-defined threshold. We denote the threshold for class
similarity as Tclass. After completing pairwise comparisons
within the matched slice, the unmatched classes are recorded
for further global pairwise comparison. In the global pairwise
comparison, if the similarity of Cf between two classes
exceeds Tclass, we add them to the matching relationships.
If there are still classes that have not been matched in the
global pairwise comparison, we consider them newly added
or deleted. After completing all the outer class matches, we
further compare the nested classes. Specifically, we compare
Cf of the nested classes and match those with a similarity
greater than Tclass.

F. Pairwise Method Matching

In the method-matching phase, we use the method body
signatures to identify if methods have been modified. Specif-
ically, for the methods in the matched classes, we perform
pairwise comparisons to match methods in classes and further
determine whether the matched methods are identical or have
been updated. If Mh of two methods are the same, we take
them as identical. Otherwise, we further compare the Mf of
two methods and take them as updated if the similarity ex-
ceeds the pre-defined threshold, which we denote as Tmethod.
Ultimately, for the matched classes, we can output whether
the methods they contain are identical, updated, newly added,
or deleted.

Extend Matching: As for the identical methods, we fur-
ther inspect the external dependencies to extend class matches.
Specifically, if two methods are identical, then the external
classes that these two methods depend on should be the same,
even if they might be obfuscated with different names. The
similarity of the corresponding classes is further inspected
to check whether they are actually matched. Method-level
matching and class-level matching are performed recursively
until no new class matches are found.

IV. EVALUATION

We evaluate MatchScope on different settings and address
the following three research questions:

• RQ1: How effective is MatchScope for matching classes
and methods on the ground truth?

• RQ2: How effective is MatchScope on real-world apps?
• RQ3: What is the runtime performance of MatchScope?

A. Evaluation Setup

Implementation: We build MatchScope based on Soot
[38], using Soot to extract code features for matching. Match-
Scope comprises 2K+ lines of Java code. The evaluation
environment is an 80-core server with 256GB RAM, running
on Ubuntu OS 20.04 LTS with a Linux 5.4.0 kernel. Two
thresholds used by MatchScope, i.e., Tclass and Tmethod,
are set as 0.6 and 0.2, respectively, for the balance of false
positives and false negatives.

Dataset: For the evaluation of MatchScope, we con-
struct three datasets. First, we create a ground truth dataset
DS1, which consists of 20 open-source projects from F-
Droid [39]. We randomly select these 20 projects from the
default app recommendation page of F-Droid [40], covering
most categories. We collect each project’s latest five released
versions from its source code repository for cross-version
matching. It is important to note that not all apps in this
dataset enable obfuscation by default. For those apps that
do not use obfuscation (9/20), we enabled the obfuscation
with R8 (the default compiler since Android Studio 3.4) in
the compilation to ensure that all apps in the dataset utilize
obfuscation mechanisms. We adopted the default obfuscation
configuration, which is used by most apps [35]. In addition
to the open-source projects, we collect 30 most popular apps
[41] on the Google Play Store to investigate the performance
of our tool on real-world apps. In order to cover apps in
their early lifecycle stages (considering that popular apps have
often undergone continuous iterations for a long time), we
also randomly gather 30 newly uploaded apps to the Google
Play Store in 2023. These newly uploaded apps have received
updates within the last two months, indicating they are still
actively maintained. With respect to the 60 apps, we collect
their latest 10 versions and create the popular app dataset
DS2 and the new app dataset DS3, respectively. For new apps
with a total number of updates below 10, we collect all their
updated versions and included them in the dataset. Each app’s
historical versions are downloaded through APKPure [42].
Table I illustrates the detailed information of the collected
apps. In total, we collect 200 versions for the DS1, 300
versions for the DS2, and 214 versions for the DS3. Popular
apps undoubtedly have significantly higher download counts.
We also collect the release dates of the versions in the dataset
to analyze the update cycles of the apps. The table shows
that popular apps tend to have shorter update cycles, with
an average of 15.30 days. In contrast, apps in DS1 have the
longest update release cycle, averaging 46.33 days. The rapid
update frequency of real-world apps in both DS1 and DS2

signifies the imperative need for automated app cross-version
code matching.

TABLE I: Statistics on the Download Counts and Update
Cycle of Apps in the Datasets

Dataset Average Downloads Update Cycle (Days)
DS1 353.51 K 46.33
DS2 3.51 B 15.30
DS3 16.44 M 19.26

Table II provides statistics on the number of classes and
methods of apps in these three datasets. Since MatchScope
performs preprocessing operations on these apps, removing
irrelevant classes from matching, we separately collected sta-
tistical information before and after preprocessing. We can
observe that popular apps generally contain more classes and
methods. Before preprocessing, on average, the class quantity
in the DS2 is 16,707, nearly 13 times that of the DS1 and

TABLE II: Statistics on the Number of Classes and Methods
of Apps in the Datasets

Dataset
Before Preprocessing After Preprocessing

Classes # Methods # Classes # Methods
DS1 1,297 12,202 1,251 11,409
DS2 16,707 125,202 16,522 115,371
DS3 5,313 54,272 5,181 50,407

3 times that of the DS3. Similar differences in quantity are
also reflected in the number of methods. Therefore, achieving
good performance on these popular apps requires designing an
efficient matching approach. Besides, the proportion of classes
obfuscated after preprocessing in the DS2 is 84.02%. This is
a relatively high ratio and also imposes high requirements on
the anti-obfuscation capabilities of our designed approach.

B. RQ1: Effectiveness on the Ground Truth

For the 200 apps in DS1, we manually compiled them
to obtain the mapping file generated by the obfuscation
tool. This mapping file contains the relationship between the
original class names in the source code and the meaningless
obfuscated identifiers generated by the obfuscation tool. Using
this mapping, we can construct mappings of obfuscated class
and method names across different versions, which serve as
our ground truth. We choose APKDiff [22], the state-of-
the-art class-level matching tool for comparison. Since the
source code of APKDiff is currently not publicly available,
we followed the description provided in the research paper to
reproduce its implementation. APKDiff mainly extracts app
class structure features (similar to the class-level features we
have extracted) for cross-version class matching and does not
support method-level matching. Besides, since APKDiff does
not adopt similar preprocessing operations as MatchScope to
remove synthetic classes and empty classes, the overall match-
ing scope of APKDiff is slightly larger than MatchScope. We
use MatchScope and APKDiff to match consecutive versions
of each app in DS1, and analyze the output of these two tools
with the cross-version obfuscated identifier mapping extracted
from the mapping file (i.e., the ground truth). Specifically, both
tools output the class-to-class mapping relationship from the
original to the updated app. For each class in the original app,
if the tool identified the correct corresponding class in the
updated version, we take it as a true positive. On the contrary,
if the tool incorrectly matches it to another class, we take it
as a false positive. For those unmatched classes, if they exist
in both versions, we take them as false negatives.

As is shown in Table III. MatchScope achieves a precision
of 97.49% and a recall of 92.34%, 19.50% and 30.74% higher,
respectively, than APKDiff. In terms of false positives of
MatchScope, since we use a similarity-based approach to de-
termine whether the classes in the matched slices are matched,
if the similarity between different classes is relatively high
(e.g., two classes are different implementations of the same
interface and share similar functionalities), it may unavoidably
lead to incorrect matching. The false negatives of MatchScope

mainly stem from two reasons. Firstly, some classes in these
apps undergo significant changes (e.g., apps update the third-
party libraries used), resulting in the similarity falling below
our set threshold. Secondly, in some cases, the apps in
DS1 update their compilation configurations, leading to sub-
stantial differences between consecutive versions. However,
once the compilation configurations stabilize, the matching
performance will return to the normal level. Actually, for real-
world apps, considering compatibility issues, the compilation
configurations rarely change. Therefore, the performance of
our tool in practical use is not affected.

We further evaluate the effectiveness of the method-level
matching of MatchScope. The overall evaluation approach is
similar to the class-level evaluation. For the methods in the
matched classes of the original app, we examine whether they
are correctly matched to the methods in the updated version.
The methods in the classes taken as false negatives in the
class-level matching are also taken as false negatives in the
method-level evaluation. As illustrated in Table III, in the
method matching task, with the aid of accurate class-level
matching, the precision of method matching is exceptionally
high, reaching 99.75%. At the same time, due to the effect of
the class-level matching recall, the recall at the method level
is relatively low but still reaches 95.23%.

TABLE III: Comparison with APKDiff on the Ground Truth
(MS=MatchScope, AD=APKDiff, PR=Precision, RC=Recall)

Tool
Class-level Method-level

PR RC F1 PR RC F1
MS 97.49% 92.34% 94.85% 99.75% 95.23% 97.44%
AD 81.58% 70.63% 75.71% / / /

C. RQ2: Effectiveness on Real-world Apps

To further validate the effectiveness of MatchScope, we
evaluate MatchScope on real-world apps, i.e., the apps in
DS2 and DS3. We use MatchScope to analyze consecutive
versions of these apps to perform the matching. We set the
timeout for analysis on a pair of consecutive versions to 20
minutes. For all the 540 (60 × 9) comparisons, MatchScope
failed in 6 comparisons due to errors from Soot. Table IV
shows the detailed results of these two datasets. As we can
see, MatchScope successfully matched on average 93.26% and
93.28% of all classes across app versions in DS2 and DS3,
respectively. With regard to the method-level matching, Match-
Scope successfully matched 94.85% and 93.83% methods in
the two datasets. Besides, we find that, on average, 47.67%
classes in DS2 will have different obfuscated names after each
update.

Since almost all are closed-source, we could not obtain
the ground truth of detailed updated information on class
and method levels for these real-world apps. Therefore, we
manually confirm the accuracy of the matching relationships
constructed by MatchScope. Specifically, for each of these 60
apps, we randomly selected one successful matching compar-
ison and extracted at most 50 class mapping relationships

TABLE IV: Matching Results on Real-world Apps

Dataset # Matched
Classes

% Matched
Classes

Added
Classes

% Added
Classes

Matched
Methods

% Matched
Methods

Added
Methods

% Added
Methods

DS2 15,408 93.26% 908 5.50% 109,429 94.85% 3,306 2.87%
DS3 4,833 93.28% 601 11.74% 47,299 93.83% 2,297 4.56%

where the class names were different in the two versions.
Finally, we obtained 2,115 matches. For these matches, we
used disassembly tools to observe whether their bytecode
matched to determine the correctness of the tool’s output. We
established an inspection team comprising four researchers
with substantial experience in reverse engineering Android
apps. The team is divided into two groups, where each pair of
members within a group validates the same set of matching
relationships and performs cross-validation to avoid errors. For
matches with conflicting opinions, four team members discuss
together and finally determine the correctness. Eventually, we
confirmed that on the real-world apps, MatchScope achieved
a detection accuracy of 99.01% (2,094/2,115), which is con-
sistent with our evaluation on the ground truth. In terms of
code changes, we find that in each update, the apps in DS2

on average add more new code than apps in DS3. This implies
that although these popular apps have evolved for several
years, they are still undergoing active updates.

TABLE V: Average Execution Time (seconds) on Three
Datasets (MS=MatchScope, AD=APKDiff, CM=Class Match-
ing, MM=Method Matching)

Phase
DS1 DS2 DS3

MS AD MS AD MS AD
Profile 16.36 11.59 68.10 52.42 26.12 17.03

CM 0.52 1.33 26.68 275.73 2.68 9.09
MM 0.11 / 1.09 / 0.44 /
Sum 16.99 12.92 95.87 328.15 29.24 26.12

D. RQ3: Efficiency

We measure the running time of MatchScope and APKDiff
on the three datasets. We divide the operation of MatchScope
into different phases and record the time separately. Specifi-
cally, the running of MatchScope is divided into three phases:
profiling, class-level matching, and method-level matching.
The profiling phase revolves running Soot packs, extracting
the required signatures, and calculating the corresponding
hashes. Similarly, the running time of APKDiff is also divided
into two parts: profiling and class-level matching. Table V
shows the execution time of both tools on the three datasets.
MatchScope is overall efficient, and even on DS2, the dataset
with the highest complexity, it can complete the matching
process for two apps in an average of 95.87 seconds. In
contrast, APKDiff takes three times longer than MatchScope.
MatchScope achieves better efficiency because it can conduct
more targeted pairwise comparisons compared to APKDiff.
This also allows it to use more granular features for similarity
comparison, thereby achieving higher accuracy. MatchScope

is slightly slower than APKDiff on DS1. The underlying
rationale is that MatchScope needs to collect more features and
calculate fuzzy hash compared with APKDiff. However, given
that apps in DS1 are typically smaller than the average, the
time saved in code matching by MatchScope is insignificant
compared with the time spent on profile building. Indeed,
a significant portion of the time spent by MatchScope is
dedicated to executing Soot packs and extracting features.
There is room for further efficiency improvement by replacing
Soot components, which currently MatchScope depends on for
feature extraction.

V. DISCUSSION

In this section, we first discuss the robustness and limitations
of our work. Then, we discuss the threats to the validity of
our work.

A. Robustness and Limitations

To improve the matching efficiency, MatchScope leverages
the index information implicitly embedded in the obfuscated
class names of the apps to perform index-aware matching
so that the pairwise similarity comparisons can be guided.
With the evolution of obfuscation techniques, this character-
istic (i.e., the implicitly embedded index information) might
undergo further obfuscation. In such cases, the efficiency
of our tool may be affected, but the overall accuracy will
not be affected. However, we believe this characteristic will
continue to exist because determinism and reproducibility are
among the design principles of obfuscation tools. Introducing
additional randomness to the obfuscation stage will increase
the workload for developers when analyzing obfuscation-
related bugs. Moreover, we argue that it’s impractical to design
obfuscation-resilient code-matching schemes that withstand all
potential obfuscation mechanisms.

As for the limitation, MatchScope may not handle the
optimization techniques such as method inlining and wrapping,
which needs a better understanding of program semantics
by incorporating detection for these optimization techniques.
It is still an open question that requires further in-depth
research. For the obfuscation technique of string encryption,
MatchScope currently does not support it because we extract
constant strings as features. We could opt to forgo the constant
string feature to support this obfuscation technique. However,
we have chosen to use this feature since, in popular real-world
apps, Java code rarely employs string encryption as an obfus-
cation mechanism [26]. Lastly, MatchScope currently supports
matching Java code only and does not consider changes in
native code. In fact, for some apps, certain functionalities are
implemented using native code. The analysis of native code

requires quite different tools and designs, and we leave this
for future work.

B. Threats to Validity

In this section, we discuss two potential threats to the
validity of MatchScope and provide our solutions to alleviate
these threats.

One possible threat to validity is the representativeness of
the chosen apps for evaluation. It is essential to ensure that the
chosen apps are a diverse and comprehensive representation
of the entire Android app ecosystem. To mitigate this threat,
we constructed three datasets consisting of open-source apps,
popular apps, and new apps, respectively. Among them, pop-
ular apps have the broadest impact and can also reflect the
characteristics of current mainstream apps. Introducing new
apps reflects the early evolution of apps, as popular apps have
usually undergone several years of evolution. We also paid
attention to the uniformity of categories to which the apps
belong, ensuring that biases are minimized.

Another threat to validity is the possible bias and subjective-
ness caused by human involvement in the evaluation process.
As for the evaluation on real-world apps, we randomly selected
matching results and manually validated them. To address
the threat caused by human involvement, the authors were
divided into two groups in the manual inspection phase. Each
pair of members within a group inspected the same set of
matching relationships and cross-validated the results. Con-
flicting opinions were resolved through discussions, ensuring
a more objective and comprehensive assessment of the tool’s
performance.

VI. RELATED WORK

This section briefly reviews prior research on app evolution
and code deobfuscation.

A. App Evolution

Since the release of Android, the evolution of Android apps
has been a subject of interest among researchers, especially
in the context of app security and privacy [43] [44]. Ren et
al. studied the privacy evolution of 512 popular apps over
eight years [45]. By intercepting and analyzing the network
traffic of these apps, they discovered an increasing trend
in collecting personally identifiable information within these
Android apps. Taylor et al. focus on how permission usage and
vulnerability evolve across app versions over two years. They
found that in many cases, app updates introduced new security
vulnerabilities, leading to more intrinsic vulnerabilities in the
new versions of the apps [25]. Similarly, Gao et al. also
leverage existing vulnerability-finding tools to investigate how
vulnerabilities evolve in terms of vulnerability types and how
they were introduced [3]. In addition to the focus on security
and privacy aspects, there is a considerable amount of work
analyzing the evolution of apps from other various perspectives
[46] [47] [48] [49]. For example, McIlroy et al. confirmed that
users tend to give higher ratings for apps with higher update
frequencies rather than disliking them [4]. Our work can serve

as the basis for subsequent studies, enabling research into more
granular aspects of app evolution.

B. Code Deobfuscation

Code deobfuscation is a technique to restore the program
code safeguarded with obfuscation to the state before obfus-
cation as much as possible [50] [51] by identifying, sim-
plifying, and removing the obfuscated code, thereby making
the program more comprehensible. This is a highly relevant
area because, in this work, we focus on circumventing code
obfuscation protection to match code across versions. Machine
learning is a commonly applied technique for deobfuscation
with the help of a large amount of unobfuscated code. De-
Guard [19] obtains knowledge of naming methods in Android
apps from thousands of unobfuscated app codes and applies
the probabilistic model to restore unseen obfuscated apps.
Baumann et al. [21] develop a tool for deobfuscating code pro-
tected by ProGuard [32], where software similarity algorithms,
including SimHash and n-gram, are applied to match similar
code segments between the obfuscated and unobfuscated code.
Using a deobfuscation tool first to deobfuscate the app code
and then perform code matching is also an option for the task
in this paper. However, this approach is constrained by the
accuracy and efficiency of the deobfuscation tools and can
not achieve satisfactory code matching currently.

VII. CONCLUSION

In this paper, to address the challenge of code obfuscation
in cross-version code matching for Android apps, we propose
MatchScope, a new technique that leverages features remain-
ing stable before and after obfuscation to perform class and
method matching. MatchScope makes a practical assumption
about code obfuscation in apps, adaptively matching classes
based on whether the names are obfuscated. As for the
obfuscated classes, MatchScope effectively leverages different
levels of fine-grained code features, including class structures,
method descriptors, and method opcodes for similarity match-
ing, thereby achieving high accuracy. Regarding enhancing
matching efficiency, the key insight of MatchScope lies in that
the obfuscation tools usually rely on an incrementing index to
generate obfuscated names for classes deterministically. Based
on this finding, we design and implement the index-aware class
matching algorithm, which narrows pairwise comparisons to
a small scope, achieving accurate and efficient matching. The
evaluation on three datasets consisting of open-sourced and
real-world apps demonstrates the effectiveness of MatchScope.
Our work can not only improve the efficiency of reverse
engineering but also serve as a basis for future research on
app evolution.

VIII. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
comments. This work is in part supported by the National Sci-
ence Foundation of China (No. 61872237). Yuanyuan Zhang
is the corresponding author.

REFERENCES

[1] “Android & Google Play at Google I/O 2022,” https://io.google/2022/
products/android, 2023.

[2] “Android and Google Play statistics,” https://www.appbrain.com/stats,
2023.

[3] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Understanding
the evolution of android app vulnerabilities,” IEEE Trans. Reliab.,
vol. 70, no. 1, pp. 212–230, 2021. [Online]. Available: https:
//doi.org/10.1109/TR.2019.2956690

[4] S. McIlroy, N. Ali, and A. E. Hassan, “Fresh apps: an empirical study
of frequently-updated mobile apps in the google play store,” Empir.
Softw. Eng., vol. 21, no. 3, pp. 1346–1370, 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9388-2

[5] D. Schmidt, “A security and privacy audit of kakaotalk’s end-to-end
encryption,” 2016.

[6] P. Rösler, C. Mainka, and J. Schwenk, “More is less: On the end-to-end
security of group chats in signal, whatsapp, and threema,” in 2018
IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018. IEEE, 2018, pp. 415–429.
[Online]. Available: https://doi.org/10.1109/EuroSP.2018.00036

[7] K. G. Paterson, M. Scarlata, and K. T. Truong, “Three lessons
from threema: Analysis of a secure messenger,” in 32nd USENIX
Security Symposium, USENIX Security 2023, Anaheim, CA, USA,
August 9-11, 2023, J. A. Calandrino and C. Troncoso, Eds.
USENIX Association, 2023, pp. 1289–1306. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/paterson

[8] Q. Zhao, C. Zuo, B. Dolan-Gavitt, G. Pellegrino, and Z. Lin, “Automatic
uncovering of hidden behaviors from input validation in mobile apps,”
in 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 1106–1120.
[Online]. Available: https://doi.org/10.1109/SP40000.2020.00072

[9] A. Mantovani, S. Aonzo, Y. Fratantonio, and D. Balzarotti, “Re-
mind: a first look inside the mind of a reverse engineer,” in 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA,
USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds.
USENIX Association, 2022, pp. 2727–2745. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/mantovani

[10] D. Votipka, S. M. Rabin, K. K. Micinski, J. S. Foster,
and M. L. Mazurek, “An observational investigation of reverse
engineers’ processes,” in 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, S. Capkun
and F. Roesner, Eds. USENIX Association, 2020, pp.
1875–1892. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/votipka-observational

[11] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016.
IEEE Computer Society, 2016, pp. 158–177. [Online]. Available:
https://doi.org/10.1109/SP.2016.18

[12] “The cybersecurity workforce gap.” https://www.csis.org/analysis/
cybersecurity-workforce-gap, 2019.

[13] J. Mattei, M. McLaughlin, S. Katcher, and D. Votipka, “A qualitative
evaluation of reverse engineering tool usability,” in Annual Computer
Security Applications Conference, ACSAC 2022, Austin, TX, USA,
December 5-9, 2022. ACM, 2022, pp. 619–631. [Online]. Available:
https://doi.org/10.1145/3564625.3567993

[14] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo,
“Libd: scalable and precise third-party library detection in android
markets,” in Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017, S. Uchitel, A. Orso, and M. P. Robillard, Eds. IEEE / ACM, 2017,
pp. 335–346. [Online]. Available: https://doi.org/10.1109/ICSE.2017.38

[15] J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: reliable
identification of obfuscated third-party android libraries,” in Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019,
D. Zhang and A. Møller, Eds. ACM, 2019, pp. 55–65. [Online].
Available: https://doi.org/10.1145/3293882.3330563

[16] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, E. R. Weippl, S. Katzenbeisser,

C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp.
356–367. [Online]. Available: https://doi.org/10.1145/2976749.2978333

[17] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu,
“ATVHUNTER: reliable version detection of third-party libraries for
vulnerability identification in android applications,” in 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 2021, pp. 1695–1707. [Online].
Available: https://doi.org/10.1109/ICSE43902.2021.00150

[18] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in android applications with
high precision and recall,” in 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018, Campobasso,
Italy, March 20-23, 2018, R. Oliveto, M. D. Penta, and D. C. Shepherd,
Eds. IEEE Computer Society, 2018, pp. 141–152. [Online]. Available:
https://doi.org/10.1109/SANER.2018.8330204

[19] B. Bichsel, V. Raychev, P. Tsankov, and M. T. Vechev, “Statistical
deobfuscation of android applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp.
343–355. [Online]. Available: https://doi.org/10.1145/2976749.2978422

[20] B. Yadegari, “Automatic deobfuscation and reverse engineering of
obfuscated code,” Ph.D. dissertation, University of Arizona, Tucson,
USA, 2016. [Online]. Available: https://hdl.handle.net/10150/613135

[21] R. Baumann, M. Protsenko, and T. Müller, “Anti-proguard: Towards
automated deobfuscation of android apps,” in Proceedings of the 4th
Workshop on Security in Highly Connected IT Systems, SHCIS@DAIS
2017, Neuchâtel, Switzerland, June 21 - 22, 2017. ACM, 2017, pp.
7–12. [Online]. Available: https://doi.org/10.1145/3099012.3099020

[22] R. D. Ghein, B. Abrath, B. D. Sutter, and B. Coppens, “Apkdiff:
Matching android app versions based on class structure,” in Proceedings
of the 2022 ACM Workshop on Research on offensive and defensive
techniques in the context of Man At The End (MATE) attacks, Los
Angeles, CA, USA, 11 November 2022. ACM, 2022, pp. 1–12.
[Online]. Available: https://doi.org/10.1145/3560831.3564257

[23] H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu, “Pedroid: Automatically
extracting patches from android app updates,” in 36th European
Conference on Object-Oriented Programming, ECOOP 2022, June
6-10, 2022, Berlin, Germany, ser. LIPIcs, vol. 222. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, pp. 21:1–21:31. [Online].
Available: https://doi.org/10.4230/LIPIcs.ECOOP.2022.21

[24] L. Li, T. F. Bissyandé, and J. Klein, “Simidroid: Identifying
and explaining similarities in android apps,” in 2017 IEEE
Trustcom/BigDataSE/ICESS, Sydney, Australia, August 1-4, 2017.
IEEE Computer Society, 2017, pp. 136–143. [Online]. Available:
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.230

[25] V. F. Taylor and I. Martinovic, “To update or not to update: Insights from
a two-year study of android app evolution,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017,
R. Karri, O. Sinanoglu, A. Sadeghi, and X. Yi, Eds. ACM, 2017, pp.
45–57. [Online]. Available: https://doi.org/10.1145/3052973.3052990

[26] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu,
K. Chen, X. Wang, and K. Zhang, “Understanding android obfuscation
techniques: A large-scale investigation in the wild,” in Security and
Privacy in Communication Networks - 14th International Conference,
SecureComm 2018, Singapore, August 8-10, 2018, Proceedings, Part
I, vol. 254. Springer, 2018, pp. 172–192. [Online]. Available:
https://doi.org/10.1007/978-3-030-01701-9 10

[27] “Shrink, obfuscate, and optimize your app.” https://developer.android.
com/build/shrink-code, 2023.

[28] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and
S. Fahl, “A large scale investigation of obfuscation use in google
play,” in Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC 2018, San Juan, PR, USA, December
03-07, 2018. ACM, 2018, pp. 222–235. [Online]. Available:
https://doi.org/10.1145/3274694.3274726

[29] L. Li, T. F. Bissyandé, and J. Klein, “Simidroid: Identifying
and explaining similarities in android apps,” in 2017 IEEE
Trustcom/BigDataSE/ICESS, Sydney, Australia, August 1-4, 2017.
IEEE Computer Society, 2017, pp. 136–143. [Online]. Available:
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.230

[30] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun, “Stochastic
optimization of program obfuscation,” in Proceedings of the 39th

International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. IEEE / ACM, 2017, pp. 221–231.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.28

[31] C. S. Collberg and C. D. Thomborson, “Watermarking, tamper-
proofing, and obfuscation-tools for software protection,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 735–746, 2002. [Online]. Available:
https://doi.org/10.1109/TSE.2002.1027797

[32] “Proguard,” https://www.guardsquare.com/proguard, 2023.
[33] “D8 dexer and R8 shrinker,” https://r8.googlesource.com/r8, 2023.
[34] “A bytecode optimizer for android apps,” https://github.com/facebook/

redex, 2023.
[35] Y. Wang and A. Rountev, “Who changed you? obfuscator identification

for android,” in 4th IEEE/ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft@ICSE 2017, Buenos
Aires, Argentina, May 22-23, 2017. IEEE, 2017, pp. 154–164.
[Online]. Available: https://doi.org/10.1109/MOBILESoft.2017.18

[36] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying
open-source license violation and 1-day security risk at large scale,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, B. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, Eds. ACM, 2017, pp. 2169–2185. [Online]. Available:
https://doi.org/10.1145/3133956.3134048

[37] P. Wang, Q. Bao, L. Wang, S. Wang, Z. Chen, T. Wei, and D. Wu,
“Software protection on the go: a large-scale empirical study on
mobile app obfuscation,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds. ACM, 2018, pp. 26–36. [Online]. Available:
https://doi.org/10.1145/3180155.3180169

[38] “Soot - A Java optimization framework,” https://github.com/soot-oss/
soot, 2023.

[39] “F-droid - Free and Open Source Android App Repository,” https://
f-droid.org/, 2023.

[40] “F-droid Packages,” https://f-droid.org/packages/, 2023.
[41] “Top apps ranking - Most Popular Apps in United States,” https://www.

similarweb.com/apps/top/google/app-index/us/all/top-free/, 2023.
[42] “Apkpure,” https://apkpure.com/, 2023.
[43] P. Calciati, K. Kuznetsov, X. Bai, and A. Gorla, “What did really

change with the new release of the app?” in Proceedings of the 15th
International Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018. ACM, 2018, pp. 142–152.
[Online]. Available: https://doi.org/10.1145/3196398.3196449

[44] A. K. Jha, S. Lee, and W. J. Lee, “An empirical study of configuration
changes and adoption in android apps,” J. Syst. Softw., vol. 156, pp. 164–
180, 2019. [Online]. Available: https://doi.org/10.1016/j.jss.2019.06.095

[45] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. R. Choffnes, and
N. Vallina-Rodriguez, “Bug fixes, improvements, ... and privacy leaks -
a longitudinal study of PII leaks across android app versions,” in 25th
Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018. [Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2018/02/ndss2018 05B-2 Ren paper.pdf

[46] S. Hassan, W. Shang, and A. E. Hassan, “An empirical study
of emergency updates for top android mobile apps,” Empir. Softw.
Eng., vol. 22, no. 1, pp. 505–546, 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9435-7

[47] D. Domı́nguez-Álvarez, D. Toniuc, and A. Gorla, “Rechan: An
automated analysis of android app release notes to report
inconsistencies,” in 9th IEEE/ACM International Conference on
Mobile Software Engineering and Systems, MobileSoft@ICSE 2022,
Pittsburgh, PA, USA, May 17-18, 2022. IEEE, 2022, pp. 73–83.
[Online]. Available: https://doi.org/10.1145/3524613.3527819

[48] J. Gao, L. Li, T. F. Bissyandé, and J. Klein, “On the evolution of mobile
app complexity,” in 24th International Conference on Engineering
of Complex Computer Systems, ICECCS 2019, Guangzhou, China,
November 10-13, 2019, J. Pang and J. Sun, Eds. IEEE, 2019, pp. 200–
209. [Online]. Available: https://doi.org/10.1109/ICECCS.2019.00029

[49] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play,”
in The World Wide Web Conference, WWW 2019, San Francisco, CA,
USA, May 13-17, 2019, L. Liu, R. W. White, A. Mantrach, F. Silvestri,
J. J. McAuley, R. Baeza-Yates, and L. Zia, Eds. ACM, 2019, pp. 1988–
1999. [Online]. Available: https://doi.org/10.1145/3308558.3313611

[50] R. Guo, Q. Liu, M. Zhang, N. Hu, and H. Lu, “A survey of obfuscation
and deobfuscation techniques in android code protection,” in 7th IEEE
International Conference on Data Science in Cyberspace, DSC 2022,
Guilin, China, July 11-13, 2022. IEEE, 2022, pp. 40–47. [Online].
Available: https://doi.org/10.1109/DSC55868.2022.00013

[51] Y. Zhao, Z. Tang, G. Ye, X. Gong, and D. Fang, “Input-output example-
guided data deobfuscation on binary,” Security and Communication
Networks, vol. 2021, pp. 1–16, 2021.

