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ABSTRACT
The prosperity of the GitHub community has raised new concerns

about data security in public repositories. Practitioners who man-

age authentication secrets such as textual passwords and API keys

in the source code may accidentally leave these texts in the public

repositories, resulting in secret leakage. If such leakage in the source

code can be automatically detected in time, potential damage would

be avoided. With existing approaches focusing on detecting secrets

with distinctive formats (e.g., API keys, cryptographic keys in PEM

format), textual passwords, which are ubiquitously used for authen-

tication, fall through the crack. Given that textual passwords could

be virtually any strings, a naive detection scheme based on regular

expression performs poorly. This paper presents PassFinder, an

automated approach to effectively detecting password leakage from

public repositories that involve various programming languages

on a large scale. PassFinder utilizes deep neural networks to unveil

the intrinsic characteristics of textual passwords and understand

the semantics of the code snippets that use textual passwords for

authentication, i.e., the contextual information of the passwords

in the source code. Using this new technique, we performed the

first large-scale and longitudinal analysis of password leakage on

GitHub. We inspected newly uploaded public code files on GitHub

for 75 days and found that password leakage is pervasive, affecting

over sixty thousand repositories. Our work contributes to a better

understanding of password leakage on GitHub, and we believe our

technique could promote the security of the open-source ecosystem.
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1 INTRODUCTION
GitHub has received much attention since its establishment in 2007

[9]. More andmore developers choose to create and host their repos-

itories on GitHub because of its attractive features like free code

hosting and collaborative development. Especially in the recent two

years, the GitHub community has proliferated. As of September

2020, there are 56 million registered developers on GitHub. In 2020

only, 65 million new repositories were created [4]. With so many

repositories hosted publicly on GitHub, security and privacy issues

come naturally. These repositories may contain important sensitive

authentication information such as textual passwords, API keys,

private cryptographic keys, etc. Once such sensitive information is

leaked, it will bring serious security threats to the owners.

Due to some developers’ lack of security consciousness, it is not

uncommon for such authentication information to be exposed to

the public as part of GitHub repositories [2] [3]. Among all these

authentication information, textual passwords are of great value.

Although been blamed for security pitfalls, textual passwords have

been a mainstream authentication method for decades because of

their low deployment cost and simplicity. Especially in develop-

ment, developers tend to use textual passwords to authenticate

themselves to remote services. If such textual passwords are used

for authenticating to third-party services, once they are leaked, all

the data protected by the passwords would be compromised. For

instance, a leaked Gmail password can be used to login into many

Google services, including Gmail, Google Driver, etc. It can also

be used to send phishing e-mails spoofed from the owner. Besides,

the disclosure places the owners’ all accounts in jeopardy since

security-insensitive developers tend to reuse their passwords across

different services [36]. Worse still, if the textual passwords are for

enterprise use, i.e., they are hard-coded in source code to access

or manage the enterprises’ network, database, or other system in-

frastructure, such leakage could lead to a severe security breach

[6] [7]. Despite the potential threat, it remains unknown to what

extent passwords are leaked on GitHub and whether the service

provider can effectively detect and protect leaked passwords, or in

other words, whether attackers can efficiently harvest them.

Both academia and industry have made great efforts to under-

stand and mitigate the leakage of various credentials on GitHub.

Sinha et al. [67] investigated Java files in 84 repositories to identify

AWS keys using regular expressions and lightweight static analysis.

Meli et al. [50] performed a large-scale analysis on cryptographic

key files and API keys with distinctive formats to characterize the

leakage of the secrets on GitHub. Since 2019, GitHub has intro-

duced its secret scanning feature, which scans public repositories

to prevent fraudulent use of secrets committed accidentally [10].
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So far, secret scanning supports a set of credentials, including Al-

ibaba Cloud Access Key, Azure Access Token and AWS Access Key,

etc. Besides, many open source tools [15] [17] [18] [20] [26] were

developed to help prevent developers from pushing their sensi-

tive authentication information to public repositories. However,

existing work mainly focuses on structured secrets like API keys,

which could be easily detected with well-crafted regular expres-

sions. Relatively little attention has been paid to textual passwords.

Given the serious consequences that password leakage may bring,

an in-depth study to understand the scope and magnitude of textual

password leakage on public GitHub repositories at a large scale

is necessary. Therefore, automated mining techniques towards de-

tecting passwords from GitHub repositories containing code files

written in multiple programming languages are badly needed. They

could help better understand and promote the security of the open-

source ecosystem. However, it is quite challenging to achieve due

to the following barriers.

Heterogeneity of passwords. Unlike structured secrets like

API keys, etc., textual passwords could be virtually any strings and

do not conform to distinct structures, thus making them hard to

detect with high accuracy. Existing techniques mainly rely on well-

crafted regular expressions [17] [62] [63] or entropy-based heuris-

tics [20]. Specifically, regular-expression-based password detection

techniques take keywords such as “password", “pwd", which are

usually used altogether with the actual passwords, as a significant

basis for identification, lacking the ability to model the passwords

themselves. Entropy-based techniques calculate the Shannon en-

tropy of each string, implying a hypothesis that passwords have

higher entropy than ordinary strings. However, in practice, many

passwords are chosen by humans but not randomly generated by

machines, thus violating the assumption [59]. In general, these

techniques perform poorly since they cannot properly deal with

the heterogeneity of passwords, which hinders them from being

adopted in practice.

Multiformity of source code. GitHub repositories consist of
source code files written in different programming languages [5],

following diverse syntax and styles. Such multiformity also di-

minishes the effectiveness of regular-expression-based technology.

Some work leverages specific static analyzers to bypass the impact

of different syntax and styles. Specifically, SLIC considers only Pup-

pet, an infrastructure as code (IaC) script language, and is built based

on a dedicated parser [62]. CredMiner focuses on Android smali

code [11], using backward slicing and forward simulation execution

engine to reconstruct credentials used as parameters for predefined

sink APIs in application code [75]. However, this work relies heav-

ily on the sophisticated static analysis tools designed for specific

programming languages (which are not available for unpopular

programming languages), thus lacking the generalization ability to

analyze files written in different languages. To deal with the multi-

formity problem, a programming language-agnostic technique is

needed. Besides, such static-analysis-based methods usually have

to statically analyze each file in the codebase to construct interpro-

cedural dataflow, lacking scalability to ultra-large-scale codebases

on GitHub [61].

This paper presents PassFinder, an automated approach to de-

tecting passwords in code files written in different programming

languages. Considering the two barriers mentioned above, we de-

compose the password detection problem from two aspects. On

the one hand, for the heterogeneity of passwords, we construct the

Password Model to extract the intrinsic characteristics of textual

passwords. Specifically, we divide textual passwords into two main

categories, i.e., human-chosen passwords and machine-generated

random passwords. PassFinder models the distribution of human-

chosen passwords corpus, random passwords corpus, and ordinary

strings corpus with a deep neural network, which further guides

predicting strings being passwords or not. On the other hand, con-

sidering the multiformity of source code, the critical insight is that

no matter how the programming language and style change, the

context of each password, i.e., the surrounding code snippets share

similar semantics and structures, and thus could be leveraged to de-

termine whether the usage scenario is authentication-related or not.

Specifically, we train the ContextModel to classify the code snippets

based on the semantics of program elements (methods, variables,

constants, etc.). Figure 1 shows a sample code snippet with the

password "joe****" leaked on line 8. Typically, when authenticat-

ing with passwords, developers have to provide extra information

such as identity, remote host, connection configuration, etc., which

constitute the context of the passwords. Combining intrinsic char-

acteristics and context information, PassFinder can finally identify

passwords in source code files. Intuitively, our design reflects how

a human identifies passwords in source code, i.e., by understanding

individual strings and reasoning about the meaning of the context.

Essentially, compared with existing regular-expression-based ap-

proaches [17] [20] [25], PassFinder expands and makes better use

of the information sources for detection in a data-driven way.

1 ....
2 HtmlEmail email = new HtmlEmail();
3 email.setHostName("smtp.gmail.com");
4 email.setCharset("utf8");
5 email.setSSL(true);
6 email.setSocketConnectionTimeout(30);
7 email.setAuthentication("fromaddr@gmail.com",
8 "joe****");
9 email.setSubject("Example subject");
10 email.setMsg("Example message");
11 ....

Figure 1: Code example based on real leaks

We evaluate the approach on our manually labeled ground truth

dataset. The experimental results show that PassFinder accurately

discovers leaked passwords in source code files (with a precision of

81.54% and a recall of 80.51%), significantly outperforming existing

regular-expression-based approaches. Armed with PassFinder, we

can harvest passwords from public GitHub repositories on a large

scale, gaining new insights into the current situation of password

leakage. This paper presents the first comprehensive, longitudinal

analysis of password leakage on GitHub. We examine 1,476,692 files

representing 539,012 repositories during 75 days, from which we

identify 142,479 passwords from 64,045 (11.88%) repositories. Our

results indicate that numerous developers on GitHub are faced with

a massive threat since data in public GitHub repositories can be

accessed by anyone, including malicious attackers who use GitHub
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as a source for collecting Open Source Intelligence (OSINT). Worse

still, we investigate the lifecycle of leaked passwords and find that

over 82.32% of the passwords remain available in the repositories,

not being removed within 16 days of being detected, which leaves

a long window for attacking.

In summary, our work makes the following contributions:

• New technique for password detection. We design and imple-

ment a novel technique for automatically detecting passwords

in source code. Our approach leverages both intrinsic char-

acteristics of textual passwords and semantic information of

program elements to accurately identify the hard-coded pass-

words from code files written in different programming lan-

guages.

• Large-scale password leakage analysis. Using our new tech-

nique, we investigate the password leakage in public GitHub

repositories for 75 days. This is the first large-scale systematic

study that measures password leakage on GitHub to the best

of our knowledge. We find that thousands of passwords are

leaked daily and that the majority of leaked passwords remain

available for weeks or longer.

We organize the reminder of this paper as follows: we introduce

related work of our research in Section 2. We describe the design

of PassFinder in Section 3. We present the implementation and

evaluation of PassFinder in Section 4. We report our large-scale

password leakage analysis in Section 5, followed by a discussion in

Section 6. We conclude our paper in Section 7.

2 RELATEDWORK
This section briefly reviews prior research on password security

and machine learning on code.

2.1 Password Security
Textual passwords have been ubiquitously used for authentication

between end-users and computer systems since the 1960s. To make

textual passwords more secure in practical use, many password

guidelines are proposed by academia and industry [14] [54]. These

guidelines suggest that passwords should be at least eight characters

in length, should not contain common and easily-guessed words,

should contain multiple character types, and ideally be randomly

chosen. Despite good-faith efforts in the security of their accounts

and data, users struggle to comply with password creation and

management guidelines [46].

Ever since the seminal work by Morris et al. on password crack-

ing [52], researchers have sought to understand how users cre-

ate their passwords, i.e., the intrinsic characteristics of passwords,

which could further guide password-cracking attacks [42] [59]. Matt

et al. created a probabilistic context-free grammar (PCFG) based

upon disclosed passwords and generated word-mangling rules au-

tomatically, which could be used to create password guesses [70]

[71]. Wang et al. performed an empirical study on Chinese pass-

words and improved the PCFG-based algorithm to more accurately

capture passwords of a monotonically long structure [69]. Ma et

al. developed a novel method using a 6-gram Markov model with

additive smoothing for modeling English-language passwords [49].

Conceptually, Markov models predict the probability of the next

character in a password based on the previous characters or context

characters.

In recent years, researchers have proved that deep neural net-

work models have a good performance for modeling the character-

istics of passwords [56] [57]. Melicher et al. constructed a recurrent

neural network (RNN) that outputs the number of guesses likely

needed to guess a given password [51]. Hitaj et al. used deep gen-

erative adversarial networks (GAN) to learn the distribution of

passwords to generate high-quality password guesses [41]. Pass-

Finder also learns the intrinsic characteristics of passwords with a

deep neural network model, but different from existing work, which

focuses on password guessing (thus using generative models), we

model the password detection problem as a classification task, thus

using a discriminative model.

2.2 Learning on “Big Code”
Learning on “Big Code” is a new trend, since the “naturalness” of

software [40] could be used to assist software engineering and

security tasks, including identifying code with vulnerability [48],

deobfuscation [32] [68] and code summarization [28] [30] [31] [44],

among many others [27]. These approaches analyze large amounts

of source code, ranging from hundreds to thousands of software

projects, building machine learning models of source code proper-

ties inspired by techniques from natural language processing (NLP).

It has been proved that NLP models have the ability to learn both

semantics and properties of source code snippets [64] [66]. Nan

et al. utilized NLP techniques to automatically locate the program

elements (variables, methods, etc.) of interest in Android APKs, and

then performed a learning-based program structure analysis to ac-

curately identify those carrying sensitive content to detect privacy

leakage on the Android platform [53]. Yu et al. used deep neural

network models to extract the semantic information of the binary

code for similarity detection [72]. Further, they used a deep pyramid

convolutional neural network (DPCNN) and a graph neural net-

work (GNN) for modeling source code and binary code respectively,

and achieved binary source code matching at function level [73]. Ex-

isting work focuses mainly on one programming language, most of

which were built on a specific language’s abstract syntax tree (AST),

thus lacking the generalization to multiple languages. In contrast,

the model used by PassFinder applies to different programming

languages.

3 PASSFINDER DESIGN
Detecting hard-coded passwords in source code is by no means

trivial. Existing heuristic regular-expression-based approaches [17]

[20] [25] perform poorly on both false positives and false negatives,

especially when it comes to multi-million source code files written

in different programming languages, following diverse program-

ming styles. In this section, we introduce the design of PassFinder,

which addresses the challenges of processing different languages

and precisely detects passwords in source code.

3.1 Design Overview
We model password detection in source code as a discriminative

problem. Specifically, PassFinder inspects each hard-coded string to

classify it as an ordinary string or a password, leveraging both the
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Figure 2: Design of PassFinder

intrinsic characteristics of the string sequence and the semantics

of the surrounding code snippets, i.e., the context of the string.

Figure 2 shows a high-level overview of this decomposition. To

empower PassFinder with the ability to distinguish between pass-

words and ordinary strings, we train two deep learning models, i.e.,

the Password Model and the Context Model, which will be detailed

in 3.3 and 3.4 respectively. Intuitively, this decomposition reflects

how a human identifies a password, i.e., by understanding the in-

dividual sequence and reasoning about the meaning of multiple

lines. Combining the output of both the models, PassFinder can

finally accurately identify hard-coded textual passwords in source

code. The motivation for choosing a learning-based approach over,

e.g., regular-expression-based heuristics or static dataflow analysis

is three-fold. First, deep learning methods have been proved to

be capable of performing automatic feature extraction from raw

data. Second, learning from data retains the possibility of general-

izing the approach to multiple languages. Third, the models can

continuously evolve by re-training them with more recent data.

3.2 Extracting Candidate Passwords
Given a source code file, PassFinder firstly preprocesses the whole

file by removing non-ASCII characters. As for low-frequency tokens

that cannot contribute to the result of classification, i.e., URL and

e-mail address, we replace them with specific tokens ⟨𝑈𝑅𝐿⟩ and
⟨𝐸𝑀𝐴𝐼𝐿⟩ respectively. Typically, passwords exist in source code

in the form of hard-coded strings, usually wrapped in quotes to

distinguish them from other program elements. Therefore, we can

easily extract hard-coded strings precisely with well-crafted regular

expressions. Note that we focus on strings with the length of 6 to

30, since passwords within this length interval account for the vast

majority in previously leaked password datasets [1] [69]. The exact

proportion is 99.95% in the LinkedIn [1] dataset, which will be used

for training our Password Model. Besides, PassFinder filters out

strings in the common passwords dictionary [13] because concern-

ing these passwords, even human beings who have inspected the

context cannot distinguish whether it is an unintentional leakage

or the developers deliberately using these common passwords to

replace their actual passwords. The only way to verify the valid-

ity of these passwords is to manually use them for authentication,

which is not allowed in our experiment for ethics problems. The

remaining passwords are considered candidate passwords, which

will be further inspected by PassFinder. As for each candidate pass-

word, we also extract the code snippets before and after the line

where it is located as the context.

3.3 Modeling the Intrinsic Characteristics
As for a set of strings hard-coded in source code files, a human

observer can tell which strings are more likely to be passwords

because the corpus of passwords (either human-chosen or machine-

generated) has a different distribution against ordinary strings used

in source code. Intuitively, PassFinder imitates this ability of human

beings. However, such characteristic (e.g., character frequency and

order, etc.) is hard to model with specific rules. Therefore, we use a

deep learningmodel, i.e., the PasswordModel, to extract the features

automatically and further guide prediction. Different from existing

work that models only the human-chosen passwords to construct a

generative model that outputs high-quality password guesses, in

this work, we model password detection as a three-classification

problem. Specifically, strings in source code are classified by the

PasswordModel into human-chosen passwords, machine-generated

random passwords, and ordinary strings since they follow different

distributions.

To train the Password Model, three types of data are needed. For

human-chosen passwords, we use the previously leaked LinkedIn[1]
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dataset to model. However, after manually scrutinizing the LinkedIn

dataset, we find that although the LinkedIn dataset contains almost

exclusively human-chosen passwords, it still contains a small por-

tion of machine-generated random passwords. We have to filter

out these random passwords. However, it is a non-trivial task since

there is no guaranteed mathematical test for randomness. Similar

to previous work [50], we use Shannon Entropy as an estimator

for randomness. Intuitively, random passwords should have higher

entropy, deviating significantly from the dataset’s average. Specifi-

cally, for each password in the LinkedIn dataset, we calculate its

entropy and eliminate it if its entropy is more than 3 standard devi-

ations from the mean of all passwords, classifying it as an outlier.

Then after deduplication, we get a human-chosen passwords dataset

with over 58 million passwords. As for machine-generated random

passwords, we choose the union of the character sets adopted by

popular password managers [8] [22] and use a secure pseudoran-

dom number generator (PRNG) to randomly generate 25 million

strings with a length between 6 to 30, one million for each length.

Concerning the ordinary strings in source code, we used hard-

coded strings from popular projects on GitHub. Specifically, for the

ten most popular programming languages used on GitHub [5], we

crawled 3,000 repositories with the most stars for each and got a

total of 30,000 repositories. We recursively traverse each repository

and extract hard-coded strings inside. With all these hard-coded

strings, we can model the distribution of ordinary strings used in

practice. However, after manually scrutinizing these popular reposi-

tories, we find that there exist some hard-coded passwords used for

testing or demonstration purposes. Based on the observation that

these popular repositories usually have an appropriate directory

configuration, we filter out files that contain "test" or "example" in

their full path to avoid mixing these dummy passwords into the

ordinary strings dataset. We also filter out strings already in the

human-chosen passwords dataset to avoid overlapping between

datasets. In total, we extract over 16 million unique ordinary strings

with a length between 6 to 30. Finally, we have a training dataset

that consists of 58 million human-chosen passwords, 25 million

machine-generated passwords, and 16 million ordinary strings. Al-

though the dataset is not balanced between different categories,

our Password Model learns all classes reasonably well (see Section

4.2 for more details).

As for each string in the training dataset, we tokenize it into

characters as the basic terms and encode them with “one-hot” en-

coding. We train our discriminative model with a Text Convolution

Neural Network (TextCNN) [74], which is nine layers deep with six

convolutional layers and three fully connected layers. We choose

TextCNN since it has been proven to be good at extracting local

features, which is suitable for human-chosen passwords, which typ-

ically consist of sub-tokens. Finally, our Password Model will give

the probability of strings being human-chosen passwords, machine-

generated passwords, or ordinary strings. Directly using the label

with the highest probability as the output is acceptable. However,

as for our Password Model, we focus more on precision to alleviate

false positives. Therefore, we fine-tune the threshold for predicting

ordinary strings. Finally, we set the threshold as 0.2, i.e., any strings

with the probability over 0.2 to be an ordinary string fall into this

category. Otherwise, same as normal, we choose the label with the

highest probability as the output. In this way, our Password Model

achieves a higher precision, introducing only a small impact on

the model’s overall performance. Both those classified as human-

chosen and machine-generated passwords are taken as positive

results, i.e., textual passwords.

3.4 Modeling the Context Semantics
Besides the intrinsic characteristics, PassFinder also inspects the

code snippet surrounding each candidate password, i.e., the context,

to gain more insight about the usage scenario of the candidate pass-

word and gives a prediction that whether a code snippet is used for

authentication or not. This can be taken as an essential criterion for

judging whether the string is a password. Since there is no available

open dataset on the code snippets related to authentication, we

have to establish a dataset on our own for model training.

For clarity, we focus on the ten most popular programming lan-

guages on GitHub, which account for over 88% in all languages [5].

These ten languages include JavaScript, Python, Java, Golang, C++,

TypeScript, Ruby, PHP, C#, and C. However, manually inspecting all

newly uploaded files on GitHub to pinpoint code snippets related

to authentication is inefficient since code for authentication use

occupies only a tiny part of all files. To improve the effectiveness

of collected files and labeling efficiency, we filter out non-related

files with a heuristic method. The filtering strategy will be detailed

in Section 5.1. We continuously collected candidate files and re-

viewed all content inside to pinpoint authentication-related code

snippets for three weeks. In the labeling process, we consider only

whether the code snippets are used for authentication, even if no

actual password leakage occurs. To guarantee the labeling results’

correctness, we built an inspection team, which consisted of two

Ph.D. students with four master students. All of them have done

intensive research work with software development. We divided

the team into two groups. Each group consisted of a leader and two

members. The leaders reviewed the labeling results from the mem-

bers. We only accepted and included code snippets to our dataset

when the code snippets received full agreement among the groups.

When a code snippet received different labeling results, we hosted

a discussion with all six people to decide through voting. In total,

we collected 6,000 code snippets for authentication, 600 for each

language. We also selected 600 code snippets for each language that

are not related to authentication as negative samples. The label-

ing procedure took 1,200 person-hours. We have made the dataset

publicly available for further research [23].

With the labeled data, we can train the Context Model. To gen-

eralize our Context Model to files written by different languages,

we did not laboriously parse the code into corresponding ASTs,

which is prevalently used as the input of the deep neural network

model in previous work that learns from code [29] [30] [33] [65].

Instead, we use the raw source code directly as input, relying on

the neural network to extract semantics. Like our Password Model,

we use the TextCNN model on the character level to avoid the

out-of-vocabulary (OOV) phenomena [45], which might weaken

the robustness of the models. We do not use RNN models since it is

harder for RNN models to model the dependence on the character

level, and training RNN models requires more computing resources

[35] [43]. As for the context width, i.e., the number of lines of code

snippets used as context, we set it as 6. In other words, PassFinder
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extracts code snippets 6 lines before and after the candidate pass-

words for inspecting. We made a comparison between the context

width ranging from 3 to 7 in our experiment, and the context width

of 6 achieves the best performance.

3.5 Ensembling Models
To combine the results of our Password Model and Context Model,

we used model ensembling [37] technology. Specifically, we use

the majority voting method [55], i.e., only when the Password

Model and the Context Model agree will PassFinder treat it as a

textual password. Specifically, as for each candidate password, only

if the Password Model predicts it as a human-chosen or machine-

generated password and the Context Model classifies its context

as authentication-related will it be identified as a textual password.

This is a relatively conservative strategy, but it could effectively

reduce the false positives. Besides, it is relatively easier to deploy

since it does not require extra training data.

4 EVALUATION OF PASSFINDER
We evaluate PassFinder on different settings and address the fol-

lowing three research questions:

• RQ1: How effective are the Password Model and the Context

Model respectively?

• RQ2: How effective is PassFinder at detecting passwords?

• RQ3: How effective is the Context Model in cross-language

validation?

4.1 Experiment Setup
We implement PassFinder in Python. The deep learning models

are implemented with PyTorch [58] and Scikit-Learn [60]. The

experiment environment is a 32-core server equipped with a Tesla

V100 GPU, 64GB RAM, running on Ubuntu OS with a Linux 5.4.0

kernel. We use grid search [47] as the hyper-parameters selection

method to obtain the best performance. The Password and Context

model are trained for 16 and 32 epochs respectively, using the Adam

optimizer with a learning rate of 0.0001.

4.2 RQ1: Effectiveness of the Models
In our evaluation of the Password Model, we divide the dataset

collected in Section 3.3 into the training set, test set and validation

set at a ratio of 8:1:1. We fine-tune the hyper-parameters on the

test set and finally evaluate on the validation set. As is shown in

Table 1, on average, our Password Model achieves a precision of

96.35%, a recall of 97.29%, and an F1-score of 96.79%. Figure 3 shows

a confusion matrix of the Password Model normalized by row. As

we can see, the model achieves excellent performance in all three

categories.

Table 1: Performance of the Password Model

Precision Recall F1-score

Human-chosen 98.54% 96.86% 97.69%

Random 99.21% 98.92% 99.06%

Ordinary 91.29% 96.08% 93.62%

Marco-Average 96.35% 97.29% 96.79%

O H R
Predicted label

O

H

R

Tr
ue

 la
be

l

96.08% 3.62% 0.30%

2.91% 96.86% 0.23%

0.67% 0.41% 98.92% 0.2

0.4

0.6

0.8

Figure 3: Normalized confusion matrix of the Password
Model. "O" denotes ordinary strings, "H" denotes Human-
chosen passwords and "R" denotes random passwords.

As for the evaluation of the Context Model, we train and test the

model on the dataset collected in Section 3.4 with 10-fold validation.

For comparison, we examine the performance of four widely used

text classification approaches, including Naive Bayes (NB), Logistic

Regression (LR), K-Nearest-Neighbors (KNN), and Support Vector

Machine (SVM). For these four approaches, we consider both camel-

case and underscore-case naming conventions and split each code

snippet into word-level tokens with NLTK [34]. To alleviate the

influence of word morphology, we also perform lemmatization and

lowercasing. After preprocessing, we extract the Term Frequency

and Inverse Document Frequent (TF-IDF) as feature vectors for

each code snippet. We train and fine-tune hyper-parameters by

a grid search to achieve their best performances. We assess the

classification performance of these four approaches using the same

dataset for our Context Model. The detailed precision, recall, and

F1-score is shown in Figure 4. For the context classification task,

our Context Model achieves a precision of 95.49%, a recall of 94.95%,

and an F1 score of 95.22%. Overall, our Context Model performs

best among all classification approaches.
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Table 2: Detailed regular expressions from detect-secrets, which are used for comparison in our experiment. denylist =
[db_pass,password,passwd,secrets], closing = []\’"]{0,2}, whitespace = \s*?, quote = [\’"], secret = [ˆ\s]+, nonWhitespace = [ˆ\s]*,
square_brackets = (\[\])

.

Target Regular Expression Example

({denylist})({closing})?{whitespace}:=?{whitespace}({quote}?)({secret})(\3) password:=“foobar”

({denylist})({closing})?:{whitespace}({quote}?)({secret})(\3) password: foobar

({denylist})({closing})?:({whitespace})({quote})({secret})(\4) password: “foobar”

({denylist})({square_brackets})?{optional_whitespace}={optional_whitespace}(@)?(")({secret})(\5) password[] = “foobar”

({denylist})({closing})?{whitespace}={whitespace}({quote}?)({secret})(\3) password = foobar

({denylist})({closing})?{whitespace}={whitespace}({quote})({secret})(\3) password = “foobar”

({denylist}){nonWhitespace}{whitespace}({quote})({secret})(\2); password “foobar”;

4.3 RQ2: End-to-End Effectiveness
End-to-End Ground Truth. To measure how effective Pass-

Finder is at detecting passwords in source code, we built an end-

to-end ground truth. Specifically, we randomly selected 5,000 files

from our candidate files (The collection of candidate files will be

detailed in Section 5). We used the same setting as the labeling

process for the training dataset of our Context Model, i.e., we di-

vided the inspection team into two groups (each consisted of 1

leader and 2 members) for the end-to-end ground truth. Passwords

used for authentication are accepted and included in our ground

truth. As for API keys with a length in the range of 6 to 30, we

included them also since they are essentially machine-generated

passwords and share similar context semantics with passwords. In

total, we spent 180 person-hours annotating 395 passwords in 5,000

randomly selected source code files written in ten languages.

We compared PassFinder to regular-expression-based approaches,

i.e., the state-of-the-art approaches that apply for multiple pro-

gramming languages. The particular patterns used for matching in

the regular-expression-based approaches affect their performance.

Therefore, we inspected the source code of the most popular tools

[17] [18] [12] [20] [25] that claim to be capable of detecting pass-

words in code to analyze the respective rules used for detection,

so that we can find the approach with the best performance for

comparison. We finally chose detect-secrets [7] from Yelp, a pop-

ular and continuously maintained project with over 2,000 stars

on GitHub as the baseline. It comes from two reasons. Firstly, the

regular expressions in detect-secrets cover all the patterns sup-

ported by the remaining projects. That means these are the most

well-crafted regular expressions that can be found in related open

source tools. More importantly, it contains many heuristic strate-

gies summarized by the maintainers to filter out false positives,

making it stand out among all these tools. We kept these strate-

gies in the comparison. Since detect-secrets is designed to detect

secrets on a repository basis, containing features irrelevant to pass-

word detection, in our experiment, we extracted the code related

to password detection from detect-secrets (commit 488334f) and
modified it to be consistent with our file-based detection workflow,

with the regex part unchanged. The specific regular expressions are

detailed in Table 2. As we can see, such regular expressions target

assignment statements in one line in the source code. However,

when encountered a more complex situation where passwords are

defined by APIs or irregularly organized, as is shown in Figure 1,

regular-expression-based approaches will fail. Given that no con-

spicuous patterns exist, it is unrealistic to use regular expressions

to match all possible situations.

Table 3: Comparison with the regex-based method

PassFinder Regex-based

Detected passwords 390 3,621

# True Positives 318 224

# False Positives 72 3,397

# False Negative 77 171

Precision 81.54% 6.19%

Recall 80.51% 56.71%

F1-score 81.02% 11.16%

As Table 3 shows, among the 5,000 files in the ground truth, Pass-

Finder reports 94 (41.96%) more leaked passwords than the regular-

expression-based method, resulting in a much higher coverage. This

is mainly due to PassFinder’s in-depth modeling for characteristics

of human-chosen passwords. Besides, PassFinder has a significantly

lower false-positive rate than the regular-expression-based method

because our approach analyzes more semantic information. In con-

trast, due to lacking the ability to deal with the multiformity of

source code, the regular-expression-based method has extremely

many false positives.

4.3.1 False positives and false negatives. The false positive rate is
18.46% (72/390). In most cases, this is caused by PassFinder erro-

neously predicting the passwords’ neighbors, such as username,

database name, etc., which are used together for authentication, like

passwords, since such elements might have a similar distribution as

human-chosen passwords. Even in some cases, the developers use

the same database name and passwords, which makes it difficult

for PassFinder to distinguish. We consider such false alarms as

acceptable because such false alarm implies PassFinder successfully

locates authentication-related code, and the actual passwords are

probable to be identified by PassFinder as well. When it comes to

false negatives, in many cases, it is because the Password Model

fails to correctly classify the hard-coded passwords. With more data

used for training, the performance of our models will continuously

improve.
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4.4 RQ3: Cross-language Effectiveness
We select code snippets from the ten most popular programming

languages on GitHub, including JavaScript, Python, Java, etc., for

the training of the Context Model. To validate whether our ap-

proach is generalizable to different languages, we iteratively use

nine languages for training and the reserving one for testing. Table

4 presents the detailed performance for each language, i.e., the one

for testing. We can see that our Context Model can also perform

well in cross-language settings. Performance only slightly declines

by 2.42% over average F1-scores. The result shows that PassFinder

can learn the common patterns in code snippets written by different

languages and be generalized to new languages.

Table 4: Performance of the cross-language effectiveness

Languages Precision Recall F1-score

PHP 94.62% 94.62% 94.62%

JavaScript 95.59% 95.43% 95.51%

Ruby 95.29% 96.10% 95.69%

Python 94.41% 93.93% 94.17%

Java 94.76% 95.08% 94.92%

C# 95.72% 90.40% 92.98%

C++ 91.81% 87.16% 89.42%

TypeScript 92.46% 89.32% 90.86%

Golang 87.94% 93.27% 90.53%

C 88.89% 89.64% 89.26%

Average 93.15% 92.50% 92.80%

5 LARGE-SCALE PASSWORD LEAKAGE
ANALYSIS

This section reports our empirical study on password leakage from

public GitHub repositories.

5.1 Candidate Files Collection
To investigate the password leakage in public GitHub repositories,

we have to access the content of source code files onGitHub. A large-

scale investigation is by no means trivial since it revolves around

multi-million repositories [4]. In this work, instead of cloning each

repository from GitHub and recursively traversing all inside files,

we leverage the observation that only a tiny fraction of source

code files are indeed authentication-related, leaving numerous files

unnecessary to dig. Therefore, we firstly collect files of our interest,

namely candidate files from GitHub, and then further inspect the

content of the files to determine whether password leakage happens.

Generally, there are two ways to collect files on GitHub directly:

with GitHub mirrors like GHTorrent[39], BigQuery [21], or with

the Search API [19] provided by GitHub, which supports keywords

querying with search qualifiers. We choose the latter because it

can return the latest pushed files indexed by the GitHub Search

engine, i.e., we can get results in near real-time as files are pushed to

GitHub. In contrast, GitHub mirrors tend to contain many historical

data and are not so frequently updated.

To get files that have a higher chance of containing passwords,

i.e., candidate files, firstly, we have to query GitHub Search API

with keywords. A naive way is to directly query GitHub API with

password-related keywords like “password”, “pwd” etc. However,

it could bring many unnecessary indexing results since these key-

words are prevalent in source code that implements authentication-

related features (actually not real authentication operations) such as

user registering. To avoid such query results to the greatest extent,

we use the combination of keywords to generate target queries.

Specifically, as shown in Table 5, we select keywords according

to different authentication scenes, covering e-mail service, IaC,

and general authentication. As for the selection of e-mail service

providers, we consider choosing the most popular e-mail service

since there are numerous providers. We reference the usage of e-

mail service from two leaked datasets, i.e., Adobe [38] and CSDN,

and use a weighted sum model to calculate the final proportion of

users. Note that CSDN [16] is a website for programmers, which

could give us an insight into the e-mail usage among developers.

We use the 6 most popular e-mail services, including Gmail, Yahoo,

etc., which account for 73.02% in the weighted model. We also add

“@outlook.com” and “@icloud.com”, which are popular in recent

years but not in the leaked dataset for complementary.

With the list of keywords, we combine keywords in the cate-

gory “Password” with keywords in the remaining three categories

to generate target queries, such as “@gmail.com password”. The

keywords in the “Password” category are collected by inspecting

keywords used in existing regex-based techniques. We specify the

sort type for querying as “indexed” so that the GitHub Search API

returns the most recently indexed results, ensuring we receive the

latest results. For clarity, we focus on the ten most popular pro-

gramming languages on GitHub, as is detailed in Section 3.4. We

use the language type as a search qualifier to ensure the coverage of

our crawling since GitHub search API returns only a maximum of

1,000 results. The GitHub API returns a collection of files and their

metadata for each query, including filename, URL, last modified

time, etc. We then perform a content request to get the file’s content

finally. We build our file crawling system based on PyGithub [24].

In our crawling process, four GitHub API tokens are enough to

eliminate the rate limit restrictions on GitHub API.

Table 5: Keywords used for generating target query

Category Keywords

Password password, passwd, pwd, secret, token, auth, access

E-mail

@gmail.com, @yahoo.com, @hotmail.com,

@outlook.com, @icloud.com, @qq.com,

@163.com, @126.com

IaC host, server, ip, port

General username, account

During the crawling procedure, even with the combination of

keywords strategy, our target query could still match some files

that are not likely to contain passwords. Therefore, we also filtered

these files based on the file path in the repositories. We list the

keywords we used for filtering in Table 7, which could mainly

be divided into four categories. In this way, we avoid capturing

many forked popular open-source projects and third-party libraries

used in projects. These keywords were summarized by manually
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Table 6: The statistics of the large-scale analysis

Language

# Cand.

Files

% Cand.

Files

# Cand.

Repos

% Cand.

Repos

# Det.

Pwd

% Det.

Pwd

# Det.

Files

% Det.

Files

# Det.

Repos

% Det.

Repos

Python 248,214 16.81% 103,286 19.16% 48,942 34.35% 32,036 33.99% 21,246 33.17%

Java 235,728 15.96% 76,942 14.27% 16,591 11.64% 11,333 12.03% 8,548 13.35%

JavaScript 220,963 14.96% 118,618 22.01% 22,107 15.52% 15,129 16.05% 10,879 16.99%

C# 164,310 11.13% 45,651 8.47% 9,272 6.51% 6,232 6.61% 4,398 6.87%

Typescript 142,557 9.65% 47,023 8.72% 6,741 4.73% 4,740 5.03% 3,378 5.27%

PHP 134,175 9.09% 63,857 11.85% 24,464 17.17% 15,162 16.09% 9,551 14.91%

Golang 116,026 7.86% 24,260 4.50% 3,845 2.70% 2,746 2.91% 1,874 2.93%

C++ 93,155 6.31% 21,448 3.98% 6,288 4.41% 4,051 4.30% 2,617 4.09%

Ruby 68,582 4.64% 30,965 5.74% 2,900 2.04% 2,041 2.17% 1,493 2.33%

C 52,982 3.59% 11,865 2.20% 1,329 0.93% 768 0.81% 614 0.96%

Total 1,476,692 100% 539,012
†

/
†

142,479 100% 94,238 100% 64,045
†

/
†

†
One Repository may contains different languages, we use the number of distinct repositories here.

inspecting the content of files collected by our crawler. Our heuristic

filtering strategy effectively filters out non-related files, allowing us

to perform large-scale analysis on all files pushed to public GitHub

repositories.

Table 7: Sample Keywords used to filter out unrelated files

Category Sample Keywords

Third Party

site-packages, lib, include, sdk,

third_party, 3rdParty, plugin,

vendor, external, etc.

Software

symfony, openjdk, openssl,

freebsd, linux, framworks_base,

openwrt, jquery, jdk, etc.

Internationalization lang, locale, i18n, zh_cn, etc.

Others

example, github.io, test, seed,

mock, etc.

The GitHub Search API collection began on June 6, 2021, and fin-

ished on August 23, 2021. During this period of 75 days, we captured

1,476,692 distinct candidate files representing 543,915 repositories.

Table 6 shows the distribution statistic of candidate files from dif-

ferent programming languages. Note that the candidate files used

for labeling the training dataset for Context Model and end-to-end

ground truth were collected before the large-scale analysis, but

with the same strategy.

5.2 Landscape
As is shown in Table 6, PassFinder totally discovered 142,479 pass-

words in 94,238 (6.38%) files representing 64,045 (11.88%) reposi-

tories in 75 days. On average, nearly 1,900 passwords are leaked

per day. This indicates that such password leakage is indeed perva-

sive. Table 6 breaks down the total number of leaked passwords by

language. Source code files written by Python leaked the most pass-

words, followed by PHP. Among all ten languages, the passwords

leaked by most four languages account for 78.68% of all leaks. This

may be caused by the usage scenarios of different programming

languages.

5.3 Manual Review
To further inspect the leaked passwords detected by PassFinder, we

carried out a rigorous manual review of the leakage dataset. Specif-

ically, we randomly selected 4,000 distinct leaks and examined the

file and repository containing passwords on the GitHub’s website.

Sensitivity. PassFinder is able to detect the passwords used for

authentication in source code. However, it is not known whether

the detected passwords are sensitive or not. Therefore, two Ph.D.

students (leaders in previous labeling work) inspected each leak to

evaluate each leak as sensitive, non-sensitive, or not a password.

Specifically, we thoroughly examined the context of the passwords

and related files in the repositories. Passwords determined to be

used only for testing or demonstration are considered non-sensitive.

Among all 4,000 detected leaks, 820 (20.50%) are evaluated as not

a password, i.e., false positives of PassFinder. This is consistent

with our previous evaluation data. As for the remaining 3,180 true

positive leaks, 3,138 are sensitive. Therefore, we can estimate that

the overall sensitivity of our entire data is 78.48%. This indicates that

most of the discovered secrets are sensitive, resulting in developers

and services at risk of compromise.

Authentication Scenarios. We also paid attention to the specific

authentication scenarios in the manual review process. Among

the 3,138 sensitive leaks, 2,272 passwords are used for e-mail au-

thentication, accounting for the most (72.24%). Developers who

integrate features involving automating e-mail sending may ac-

cidentally leave their accounts and passwords in the source code.

The ratio of passwords for IaC use (including use for database, SSH,

FTP, etc.) is 12.59%. Among all these 395 IaC leakages, we found

89 public hosts/IPs leaked altogether with the passwords, which

means the attackers who get the passwords can directly connect to

the database without further scouting the deployment information
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of the project if no additional security measures are taken. There

also exist 170 API keys detected by PassFinder, which do not follow

any format. PassFinder can also detect API keys since they are

machine-generated strings with similar context as password au-

thentication. We also found 157 Wi-Fi passwords, which appeared

primarily in C/C++ projects related to IoT. The 144 remaining pass-

words have different authentication scenarios. Some are used to

authenticate to platforms targeted to which the developers develop

spiders using tools like Selenium. In some cases, the developers

authenticate themselves to a remote HTTP server to further carry

out automated operations. Also, some developers use passwords to

request services that deal with CAPTCHA and SMS, etc.

5.4 Repository Characteristic
Popularity. The popularity of repositories can be characterized

with the number of stars, forks, and watchers. Specifically, for each

repository that contains passwords, we calculated the sum of the

number of stars, forks, and watchers by August 24, 2021. By this

time, 3,950 repositories have been removed from GitHub by the

owners. As for the remaining 60,095 repositories, repositories with

no star, fork, and watcher account for over 75.97% (45,653), which

shows that the vast majority of repositories are unpopular, e.g.,

probably neglected by all other users except the owners. However,

lacking popularity does not mean that the severity of leaks may

cause is reduced. Although it is not likely for a curious user to catch

such leakage, malicious attackers can harvest passwords efficiently,

as proved in this work. In a sense, such unpopular repositories

should be paid more attention since they might contain real-world

deployed projects.

Activeness. We characterize the activeness of repositories from

two dimensions. One direct dimension is the commit history. The

more commits a repository has, the more active it is. We collected

the commit counts for all repositories by August 24, 2021 and cal-

culated the Cumulative Distribution Function (CDF) of the commit

counts. As is shown in Figure 5, the commit count of 12,894 (21.46%)

repositories is no more than 2 (It is a common practice that devel-

opers create the initialization commit on the GitHub website and

push all files from local, which results in 2 commits), which means

the authors just upload the repositories to GitHub without further

maintenance. Over 19,719 (32.81%) repositories are under contin-

uous maintenance (with a commit count over 30). On the other

hand, we investigated the existence of the README file in these

repositories since this information implies whether the authors

want to promote the repositories or just host them on GitHub. We

found that over one-half (31,316, 52.11%) of the repositories have

no README file or have a simple README file containing only the

repository name with a simple description. This shows that the vast

majority of owners are not willing to promote their repositories.

5.5 Password Lifetime
Besides the coverage of password leakage, we also tried to charac-

terize the lifetime of these leaked passwords, i.e., after how long

would the owners realize the exposure and remove the passwords

from public repositories. We began our monitoring on passwords

lifetime since August 12, 2021. For each leaked password since then,

we queried GitHub daily to determine if the passwords still existed.
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Figure 5: The CDF of commit counts of different repositories

The result of daily monitoring is shown in Figure 6. As we can

see, in the first two days, the curve drops quickly, and 7.92% of the

passwords were removed. Then the curve becomes flat. However,

after 16 days the passwords were detected, less than 17.68% were

removed, which leaves a long window for attackers. The proportion

of passwords remaining exposed corresponds to API Keys leakage

in previous work [50]. Further, as for the removed leakage, we ex-

amined whether the users removed their passwords thoroughly, i.e.,

removed the commits that contain passwords. After manually in-

specting the commit history (of repositories that the owners did not

delete), to our surprise, none of these owners rewrote the repository

history, leaving these passwords still accessible.
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6 DISCUSSION
This section discusses ethics consideration, mitigations of password

leakage problems, as well as limitations of our work.

6.1 Ethics Consideration
In this paper, we conducted experiments collecting 142,479 leaked

passwords that revolved 64,045 public repositories on GitHub that
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could have severe consequences if abused. Apart from our search

queries, our methodology is passive. All secrets that we collect were

already exposed when we find them. Thus this research does not

create vulnerabilities where they did not already exist. Furthermore,

we never attempt to use any of the discovered passwords other

than for the analytics in this paper, even for innocuous purposes

like merely verifying the passwords’ validity. It prevents us from

obtaining any sensitive, proprietary, or personal information from

the password owners. As of the camera-ready, we are currently

working to notify vulnerable repository owners of our findings.

6.2 Mitigations
We have shown in this work that an attacker with minimal re-

sources could compromise the assets of numerous developers and

enterprises by stealing leaked passwords. We discuss some mitiga-

tions for such attacks here. A naive approach is to impose strict

audits for queries to GitHub Search API. If some abnormal behavior

is detected, GitHub could further block related tokens or accounts.

In this way, it would be more difficult for active attackers to harvest

passwords from public repositories. However, a motivated attacker

could use numerous tokens or accounts to achieve his goal. Such a

block strategy could also lead to a decline in common users’ experi-

ence for false-positive cases. What’s more, this approach does not

solve the most fundamental problem. i.e., the passwords are still

exposed in public GitHub repositories. It could be noticed by any

curious users, leaving a security threat for password owners.

The key to thoroughly solving the problem of password leakage

is to detect the leakage timely. GitHub’s Secret Scanning [10] has

been proven to be effective in detecting secrets with distinct formats.

We hope GitHub could integrate our detection techniques into

Secret Scanning and instantly alert developers once the password

leakage is caught. In this way, the developers could realize the

problem. Also, we suggest developers use tools such as Vault to

store secrets.

6.3 Limitations of Our Work
In this section, we briefly detail the limitations of our work. First, we

do not have ground-truth knowledge of whether the passwords we

discover are exploitable. Though great efforts were paid to exclude

them, some passwords may be stale or simply invalid. Without actu-

ally testing such passwords (which we do not do for ethical reasons),

it is not possible to have certainty that a secret is exploitable.

Second, we proved the feasibility of our approach in this paper,

i.e., leveraging both intrinsic and contextual characteristics for

password detection in source code. However, our two models can

continuously evolve with more high-quality data used for training

as well as more sophisticated algorithms that make better use of

collected data. Also, our approach can seamlessly be combined with

existing methods like regular expression-based and entropy-based

techniques to improve the coverage further.

Finally, we focus only on password leakage on GitHub in this

work. While GitHub is the largest public code hosting platform,

many other code hosting services like GitLab or BitBucket. The

leakage in such platforms has not been systematically investigated.

We leave this for future work.

7 CONCLUSION
This paper gives our research on detecting password leakage on

GitHub repositories on a large scale. To address the main challenge

that existing approaches cannot effectively identify passwords in

source code files, we propose PassFinder, a new technique for au-

tomated password detection. PassFinder leverages the intrinsic

characteristics of passwords, together with the semantic informa-

tion of code snippet, which is authentication-related, to accurately

identify passwords in code files written in different languages. The

evaluation results showed PassFinder achieves high precision and

outperforms existing heuristic approaches. Using this technique,

we performed the first large-scale and longitudinal analysis of pass-

word leakage on GitHub. Our result shows that hundreds of thou-

sands of passwords are leaked at a rate of thousands per day. Our

result also highlights the importance of data protection in today’s

open-source ecosystem.
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